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Abstract
Cross-validation using randomized subsets of data—known as k-fold cross-valida-
tion—is a powerful means of testing the success rate of models used for classifica-
tion. However, few if any studies have explored how values of k (number of subsets) 
affect validation results in models tested with data of known statistical properties. 
Here, we explore conditions of sample size, model structure, and variable depend-
ence affecting validation outcomes in discrete Bayesian networks (BNs). We created 
6 variants of a BN model with known properties of variance and collinearity, along 
with data sets of n = 50, 500, and 5000 samples, and then tested classification suc-
cess and evaluated CPU computation time with seven levels of folds (k = 2, 5, 10, 
20, n − 5, n − 2, and n − 1). Classification error declined with increasing n, particu-
larly in BN models with high multivariate dependence, and declined with increas-
ing k, generally levelling out at k = 10, although k = 5 sufficed with large samples 
(n = 5000). Our work supports the common use of k = 10 in the literature, although 
in some cases k = 5 would suffice with BN models having independent variable 
structures.
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1 Introduction

One of the more important steps in model building is ensuring the credibility and 
robustness of validation procedures designed to determine how well a model pre-
dicts known outcomes, particularly classifying categories or states of some response 
variable. As distinguished from calibration—determining the degree of fit of a 
model to a set of data—validation entails testing a model against an independent 
data set not used to initially construct and parameterize the model. Such validation 
procedures can take various forms including bootstrapping, jackknifing, and cross-
validation (e.g., Lillegard et al. 2005; Shcheglovitova and Anderson 2013; Arlot and 
Celisse 2010). In this paper, we focus on the problem of cross-validation because 
few, if any, studies have determined optimal ways to subset data sets to conduct 
cross-validation.

1.1  Cross‑validation

Cross-validation provides information that model calibration does not. Cross-vali-
dation helps reveal the degree to which a model is robust, that is, its accuracy and 
classification success when applied to new or novel situations. Cross-validation is 
also key to determining the degree to which a model is overfit. This occurs when 
calibration error rates are low but cross-validation error rates are high (Last 2006), 
signalling that a model is well tuned to some initial data or situations but cannot per-
form well with other data or other situations.

One popular form of model validation uses k-fold1 cross-validation (Geisser 
1975; Arlot and Celisse 2010). In this approach, first a data file is compiled of n 
cases, each with values of covariates and response variables. The case file is then 
typically randomized and divided into k equal segments. The first k segment, con-
sisting of n/k cases, is set aside and a model is parameterized with the remaining 
(n − n/k) cases, then tested against the first segment for rates of classification error, 
comparing model results to the known outcomes (response variable values) in each 
case. Next, from the full case file the second k segment is set aside and the model 
is parameterized with the remaining cases, then tested against the second segment, 
and so on for all k segments. Values of k can range [2, n − 1], where k = 2 pertains 
to simply splitting the case-file data set in half, and k = n − 1 refers to the “leave 
one out” (LOO) approach (e.g., Brady et al. 2010) where the model is parameter-
ized based on the n − 1 cases and then tested against each case individually. The 
LOO approach, however, can be computationally expensive, often does not provide 
additional validation benefit over lower values of k (Breiman and Spector 1992), and 
can result in high variance of model performance and model overfitting (Cawley and 
Talbot 2007).

1 K-fold (Anguita et al. 2012) is also referred to as V-fold (Arlot and Celisse 2010) and M-fold (Hobbs 
and Hooten 2015; M here is in reference to the Markov chain Monte Carlo algorithm). We use K-fold as 
a synonym for all terms.
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Tests of model validation for each k subset “fold” of the data include calcula-
tions of rates of model classification accuracy (the complement of model classifi-
cation error), and bias and variance in error rates. In general, as k varies from 2 to 
n − 1 (i.e., from few to many fold subsets), bias decreases, variance in error rate 
of the validation tests increases, and computation time increases (exponentially). 
Also, bias and model classification error tend to be inversely related. Note that 
when k = 1 there are no case file subsets, so results pertain to model calibration 
(degree to which the model fits the given data set) rather than validation (testing 
against an independent data set).

The question we address here is, what is the best value of k to help ensure opti-
mal evaluation of model validity? Also, to minimize computation time, is there 
a smallest value of k for which low bias, low variance, and high model accu-
racy (the complement of low classification error) might stabilize? These ques-
tions have been largely ignored in the literature, particularly with discrete Bayes-
ian networks (BNs). Instead, 10-fold is commonly used in the literature (k = 10; 
e.g., Aguilera et al. 2010; Booms et al. 2010; Zhao and Hasan 2013) but with no 
particular test of, nor specific rationale given for, this level. Breiman and Spec-
tor (1992) used expected squared error as the classification error of simulated 
analytic models they tested, and found that submodel selection criteria greatly 
affected validation results, with 5-fold cross-validation providing better outcomes 
than did the LOO approach.

Ideally, for n cases, the best selection of k would be such that there remains 
full representation of conditions in both the model and the test data sets. This is 
not a trivial problem, however, as even large empirical data sets (e.g., “big data”) 
can have small numbers of replications of cases with specific combinations of 
variables (Hastie et al. 2015) or can be biased by excluding or unnecessarily codi-
fying low values of some variables (Stow et al. 2018). Further, the best selection 
of k for a given data set also likely depends on a number of attributes of the data 
such as the degree of collinearity and variability, and attributes of the constructed 
model such as the degree of data discretization and the presence and form of 
interaction terms among the covariates.

1.2  Bayesian networks

This study focuses on k-fold cross-validation with discrete BN models. BNs are 
directed acyclic graphs (DAGs) that essentially represent variables linked by con-
ditional probabilities (e.g., Koski and Noble 2011; Jensen and Nielsen 2007). Out-
comes (posterior probabilities) are calculated using Bayes’ theorem. BNs are acyclic 
in that feedback loops—variables linked back to themselves—are excluded. Vari-
ables in BNs can be of various forms including continuous numeric values (ratio-
scale, interval-scale, equation-derived, or numeric constants) and discrete categories 
(nominal, cardinal, or ordinal). Typically, continuous variables are discretized into 
a finite number of exclusive value ranges or states. Here, we focus on BNs that are 
commonly represented with discrete-state (discretized) numeric variables.
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2  General modelling framework

For this project, we developed a BN model from a case file data set that we created 
with known properties of variance and collinearity (Fig.  1). In this way, we were 
able to control for the BN structure, parameter values, and uncertainties in the dis-
tributions. The BN consists of 9 covariates and one response variable (RV, final out-
come node), and 15 arcs (links between variables). Eleven arcs are between covari-
ates, representing correlational, causal, or logical relationships. The BN contains no 
cut points (nodes which, if removed, would separate the graph). All variables are 
continuous, and the dependence is specified through direct and conditional rank cor-
relations. Keeping the BN model structure constant, we varied the parameters of the 
continuous functions in each covariate, devised a series of case file data sets, and 
tested the efficacy of each model variant with each case file data set using several 
values of k in conducting k-fold cross validation. Details of model construction are 
presented further below.

2.1  Variables potentially influencing the efficacy of k‑fold cross‑validation

How well a model will perform when subjected to cross-validation is likely deter-
mined by a host of conditions describing the model structure and complexity, and 
the extent and diversity of the data set used for the testing (Table 1). We controlled 

Fig. 1  Bayesian network used in the simulation exercise. The network represents a ten-dimensional joint 
distribution with nine covariates, called  C1, …,  C9 and one response variable, called RV. There are 15 
arcs and the largest set of parents (node RV) has cardinality four
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or otherwise accounted for these conditions in our example BN and varied those that 
pertain to the test data set and values of k. With a total number of cases n, the test 
values of interest for k lie in the domain [2, n − 1].

2.2  Measures of performance

The main question for this study is to determine if there is a value of k which opti-
mizes BN model validation performance. We measured BN model performance as 
classification bias and variance. Classification bias is defined as confusion (classifi-
cation) error: false positives (Type I error), false negatives (Type II error), and total 
error. In many real-world problems, such as in environmental or natural resource 
management realms, Type I and II errors carry very different implications for cost 
and model credibility (Marcot 2007; Pawson et al. 2017), and are generally pertinent 
to binary outcome states. In our test BN models, the response variable contains 4 
states, so we calculated only total error rates. Classification variance is defined as 
the degree of variation in classification error among the k folds tested.

We refer to BN model validation performance being optimized with low confu-
sion error and low validation variance, with low values of k (thus avoiding unneces-
sary computational complexity and cost). We used the following measures of BN 
model performance: (1) log-likelihood loss, also known as negative entropy, which 
is the negated expected log-likelihood of the test set for the BN fitted from the train-
ing set; and (2) classification (prediction) error, which is the misclassification rate 
for a single node in a discrete network; here, the values of the target node are pre-
dicted using only the information present in its local distribution (from its parents). 
We used two measures of performance because they are not necessarily correlated 
and can provide complementary insights into model validity (Marcot 2012). Values 
of classification error range [0,1], where 0 = no error and 1 = complete error. Model 
prediction accuracy also can be used as a performance measure, but it is completely 
determined by the classification error (accuracy = 1 – classification error).

In our model parameterization and testing, we used a sequential optimization 
procedure whereby key parameters were fixed and other parameters were then opti-
mized iteratively (some call this a multilevel inference problem, e.g., Guyon et al. 
2010). We plotted the results as the mean model classification error rate as a func-
tion of k, where “mean error rate” here refers to averaging error rates across all k 
classification accuracy analyses for each given value of k.

2.3  Conjectures and hypotheses

We initially hypothesized at least 6 different forms of the relationship between model 
performance (e.g., classification accuracy) and values of k (Fig.  2a), including a 
null hypothesis of no effect of k on model performance. Our alternative hypothe-
ses include monotonic and modal relationships, variously suggesting some lowest 
(asymptotic exponential or sigmoid function, step function) or optimal (modal func-
tion) value of k that would provide the highest model performance outcome, or that 
model performance continues to improve (linear function) all the way through k = n 
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− 1. We also hypothesized that model classification bias would decrease and clas-
sification error variance would increase monotonically, both directly and inversely, 
with greater values of k and with large samples. Criteria for identifying the best or 
optimal value of k would vary according to the form of these functions, whether it 
be an inflection point on a curve, a percentage approach to an asymptote, the thresh-
old of a step function, or a subjective level of acceptable classification accuracy.

Here, we define optimal value(s) of k  (kop) as those with more or less stabilized 
low classification error (high model accuracy) and with the lowest number of k 
folds, under various model conditions of variable dependence and variation. In a 
general setting of testing discrete Bayesian networks, calculating  kop analytically is 
likely infeasible. Therefore, we used simulations to derive approximations with sim-
ulated data sets tested on a variety of BN models created with specified properties of 
variable dependence and variation.

3  Analysis methods

Our methods for determining optimal values of k entailed specifying the form of 
the variables used in our training data sets, specifying the algorithm for parameter-
izing the BN models from the training data sets and the resulting model structures, 
and specifying the measures of BN model performance including classification error 
rates.

Fig. 2  a Hypothetical relation-
ships of model performance 
(e.g., classification accuracy 
rates) as a function of values 
of k, in k-fold cross-validation 
of discrete Bayesian networks. 
Forms of relationships: a = null 
hypothesis of no effect of k on 
model performance, b = asymp-
totic exponential, c = asymptotic 
sigmoid, d = linear, e = step, 
f = modal. Other forms of rela-
tionships are also possible, and 
the form of the relationship may 
depend on many factors such as 
variations in the variable values 
and the dependency structure of 
the network. Positions along the 
y-axis are arbitrary. b Results 
of k-fold cross-validation from 
Bayesian network models with 
high dependency and medium 
variation among variable values, 
with a simulated case file 
sample size of 500, for various 
values of k folds
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3.1  Assumptions chosen for the variables and BN model

The assumptions we applied for choosing the form of the variables in our training 
data set are as follow:

• No dimensionality reduction, i.e., all variables in the data set are needed.
• No missing values and that any imputations (matrix completion) are already 

done.
• Parameter values are relearned for each k-fold used.
• For each k, the analysis is repeated 100 times (100 runs per k, where the 

sequence of the cases is randomized for each run, resulting in different case 
subsets).

• Retain the overall BN structure for all analyses.

We considered three main factors related to the test data set and 12 factors 
related to the BN model structure (Table 1). We did not address the potential con-
dition of model overfitting, as this was not a consideration for identifying effects 
of k for a given model structure and data set.

Many authors use data from the UCI Machine Learning Repository (http://
archi ve.ics.uci.edu/ml/datas ets.html) that provides many data sets with known 
response variable outcomes. However, we chose to devise our own simulated 
data sets so that we could control for the statistical distributions from which val-
ues of each variable would be derived, for variation in values for each variable, 
and for correlations among variables. We devised the data set scenarios using 
measures of overall variation and the degree of dependence among the covari-
ates (described below). In general, in our tests we varied the number of cases (n) 
from our simulated case files, and the values of k for each case file size. We then 
repeated cross-validation tests using combinations of values of n and k, and plot-
ted outcomes of our selected model performance metrics.

3.2  Bayesian network structure

BN structures (linkage of variables) and parameters (values of conditional prob-
abilities) can be learned from data by use of a variety of machine-learning algo-
rithms. BN structures can be learned strictly from data using unsupervised algo-
rithms such as naive Bayes structuring (Friedman et al. 1997) and, improving on 
the naive approach, the tree-augmented network (TAN) algorithm (Aguilera et al. 
2010) or with more complex algorithms as well such as constrained-based and 
score-based algorithms (Murphy 2012). BN parameters can be learned strictly by 
converting case data into relative frequencies or by other machine-learning algo-
rithms such as expectation maximization (Dempster et  al. 1977; Do and Batzo-
glou 2008), which is a convergent log-likelihood function that adjusts conditional 
probability values in a specified BN structure to best fit the known outcomes in a 
case file (Murphy 2012).

http://archive.ics.uci.edu/ml/datasets.html
http://archive.ics.uci.edu/ml/datasets.html
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Although machine learning algorithms are available for both learning the 
structure (the DAG) of a BN and fitting the parameters, there are huge varia-
tions between algorithms, especially for small datasets (e.g. when learning a BN 
on 10 variables from a sample size of 50 cases). Results of different algorithms 
can vary greatly depending on the class of the algorithm (i.e. constrained-based, 
score-based or hybrid-class) and the choice of the conditional independence test 
or of the scoring metric. After a preliminary investigation, in which we learned 
the structure using one constrained-based algorithm and one score-based algo-
rithm, we decided that the variations in the learned structures would have a very 
large confounding effect on our simulation experiment. Thus, we decided to fix 
the DAG and vary only the fit of the parameters (values of the conditional prob-
ability tables, CPTs) with the case subsets resulting from varying k.

We created 6 model variants of the general BN structure (Fig. 1) to account 
for degrees of variation of the values of the variables and of their dependence, 
that is, model variants corresponding to different parameterizations of the same 
network structure. The parametric families of the marginal distributions remained 
unchanged across the 6 model variants, but their parameters varied (see Table 2). 
The different parametrisations correspond to different combinations of marginal 
variability and overall dependence as detailed below.

The BN model we devised is a moderately large model (10 nodes, 15 links) 
with a resonable number of interconnections more or less mimicking the size 
of real-world BN models found in publications. In particular, we considered its 
similarity to one of the examples from Pourret et  al. (2008). All variables have 
continuous parametric marginal distributions (exponential, Weibull, gamma, beta, 
lognormal, normal, uniform, log-uniform), and their dependence was specified 
through Spearman’s rank correlations and conditional correlations. The mar-
ginal distribution families remained unchanged in each of the 6 variants of the 
BN model. However, their parameters changed to allow for various degrees of 
overall variation. The only marginal distribution whose parameters remained 
unchanged across all BN model variants was the distribution of the response vari-
able, RV ~ Beta (20, 5).

Table 2  Continuous 
distributions used in each 
covariate (C) and response 
variable (RV) in the Bayesian 
network model (Fig. 1)

Covariate Distribution used

C1 Exponential
C2 Gamma
C2 Weibull
C4 Gama
C5 Beta
C6 Log-normal
C7 Normal
C8 Log uniform
C9 Uniform
RV Beta
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3.3  Measures of BN model performance

We used the Van Valen coefficient of variation (CoV; defined by Eq. 2 of Adelin and 
Zhang 2010) as the overall measure of variation. This multivariate extension of the 
univariate coefficient of variation does not account for the dependence between vari-
ables. CoV takes values larger than zero with smaller values indicating less average 
variation. We considered three different values of this coefficient:  10− 2 that indi-
cated very little variation,  10− 1 that indicates medium variation, and 10 that indi-
cates large variation (Table  3). In our analysis, the degree of dependence among 
the covariates is indicated separately by the determinant (D) of the rank correla-
tion matrix, which measures linear dependence between a monotonic transformation 
of original margins. An important reason to choose D as a summary measure of 
dependence is that D factorises on the arcs of a BN, and thus can be easily con-
trolled for in a simulation exercise. D takes values between zero and one, with one 
indicating complete linear independence and zero corresponding to complete linear 
dependence.

We chose two distinct values for D  (10− 6 and 0.66) to differentiate between two 
degrees of overall dependence in the multivariate distribution (Table  3). The two 
values were chosen on the following basis. The distribution of the determinant of a 
random 10 × 10 correlation matrix is very skewed toward 0. There are many more 
10-dimensional distributions which exhibit at least one linear dependence between 
the 10 variables (actually 2 perfectly correlated variables are enough for the determi-
nant to be 0) than there are multivariate distributions where all pairwise correlations 
are 0, which is the only case for the determinant to be 1 (e.g., see Hanea and Nane 
2018). That is, the relationship between values of D and the degree of independence 
is highly nonlinear, so we chose 0.66 as a compromise to represent a relatively high 
degree of independence without forcing total independence which would be unlikely 
in real-world research data sets.

For each combination of values of D and CoV, we built a new model having the 
same structure but with different parametrization. We parameterized each of the 
6 BN model variants by using sample sizes of 50, 500 and 5000, resulting in 18 

Table 3  Variants of Bayesian 
network models as defined 
by summary measures of 
dependence (the determinant 
D of the rank correlation 
matrix) and the coefficient of 
variation (CoV), of the values 
of the model covariates (model 
affector variables)

D takes values between 0 (complete linear dependence) and 1 (com-
plete independence), where 0.66 signifies very low average depend-
ence (thus denoted here as independence). CoV takes values ≥ 0; 
where 10 −2 denotes low variation,  10− 1 medium variation, and 10 
high variation

Bayesian network model variants D CoV

Independence and low variation 0.66 ~ 10− 2

Independence and medium variation 0.66 ~ 10− 1

Independence and high variation 0.66 ~ 10
Dependence and low variation 10− 6 ~ 10− 2

Dependence and medium variation 10− 6 ~ 10− 1

Dependence and high variation 10− 6 ~ 10
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different synthetic datasets. The models were constructed and sampled using the 
software Uninet (https ://light twist -softw are.com/unine t/; Cooke et al. 2007).

The data sets were read into the software R and discretized before building the 
BNs and fitting their parameters. All variables (for all models) were discretized into 
four states using Haremink’s Algorithm (Hartemink 2001). Other discretization 
techniques were trialled, and Hartemink’s Algorithm was the only one that recov-
ered the correlation structure within a maximum of  10− 2 absolute difference when 
compared to the original correlation structure. Other choices for the number of states 
(two, three, and five) did not perform as well in terms of recovering the correlation 
structure. No dynamic discretisation was possible using the method chosen, so this 
is one potential limitation of the algorithm in Hartemink (2001); all covariates and 
the response variable are discretized using the same fixed number of states.

For each n, each k, each fold, and each repetition, we fitted the parameters using 
the maximum likelihood estimation procedure implemented in the R package 
bnlearn (Scutari 2010). We used two of the performance measures mentioned previ-
ously (also available in the R package): classification (prediction) error (pred) and 
log-likelihood loss (logl) to evaluate prediction power. Because the variables are not 
binary we could not parse the classification error into Type I and Type II errors. 
Instead we evaluated the accuracy and the amount of variation when using multiple 
runs (with100 repetitions).

We also evaluated the degree to which classification error varied across the sets 
of repeated, replicated runs for each k fold value by calculating the running standard 
error SE of classification error across the increasing number of replicate runs. For 
this, we used BN models with high multivariate dependence and medium variation 
among variable values with a simulated case file sample size of n = 500.

We tracked computer central processing unit (CPU) computation times for all 
cross-validation analyses under all combinations of k-fold values, model variants, 
and database sizes. We used a laptop computer with an Intel(R) Core(TM) i7-8550U 
CPU processor operating at 1.80 GHz, with 16.0 GB installed memory (RAM), 
and a 64-bit Windows 10 (version 1809) operating system. We used the R package 
bnlear (R version 3.5) and tracked the time to run the function bn.cv which per-
formed the k-fold cross-validations. CPU time was determined with the R function 
system.time which produced elapsed time that tracked the duration of CPU seconds 
charged to each cross-validation analysis separately for classification error and log-
likelihood loss calculations.

4  Results

Our results consisted of 126 combinations of the 6 BN model variants (two levels 
of multivariate dependence and three levels of generalised marginal variation), the 
three case-file sample sizes (n = 50, 500, and 5000), and the seven levels of folds 
(k = 2, 5, 10, 20, n − 5, n − 2, and n − 1). For each of the 126 combinations, and 
for each of the 100 replicate runs by which we reshuffled the case file entries, we 
produced confusion matrices that are tables enumerating Type I, Type II, and total 
model classification error. With the case file sample size n = 5000, log-likelihood 

https://lighttwist-software.com/uninet/
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loss was calculable only for four values of k (i.e., 2, 5, 10, 20), where the remaining 
values of k (i.e., n − 5, n − 2, and n − 1) resulted in incalculable (infinite) values 
of log-likelihood loss. Due to very long computational time for n = 5000, the confu-
sion matrices for k is n − 5, n − 2, and n − 1 were not considered either. Thus, in 
total, we produced 10,800 confusion matrices: 4200 confusion matrices (for 7 levels 
of k and 6 BN model variants) each for simulated case files of n = 50 and n = 500 
and each repeat from 100, and 2400 confusion matrices (for 4 levels of k and 6 BN 
model variants) for simulated case files of n = 5000, and repeated 100 times each.

We present here selected findings for major subsets of these combinations that 
best exemplify overall patterns, showing the influence of case file sample sizes n, 
BN model variants of multivariate dependence and marginal variation, and numbers 
of folds k, on model classification error, model accuracy, and log-likelihood loss. 
We also interpret our findings in the context of our hypothesized relationships of 
model performance to values of k, and we summarize values of k that seem to sat-
isfy optimality criteria of performance outcomes.

4.1  Influence of case file size n

Among all BN model variants, all case file sizes n, and all k folds, classification 
error ranged ~ 0.27 to ~ 0.72 (Table 4). For all values of k and all BN model vari-
ants, classification error generally declined with increasing case file size n, with a 
greater decline between n = 50 and 500, than between n = 500 and 5000 (Table 4; 
Figs. 3, 4, 5, 6). Classification error was highly statistically correlated with case file 
size n among all BN model variants and k values (df = 143, F = 48.62, p < 0.001), 
among BN models with high variable dependence and low variable dependence 
(both df = 71, F = 23.96, p < 0.001), and among BN models with high, medium, and 
low variable variation (all df = 47, F = 15.75, p < 0.001).

4.2  Influence of multivariate dependence

Declines in classification error with increasing case file size n were more promi-
nent in BN models with high multivariate dependence than for BN models with low 
multivariate dependence. The most precipitous drops in classification error occurred 
between case file sizes n = 500 and n = 5000 in high dependence models (Figs. 3, 4, 
5, 6). This held true with all values of k tested.

4.3  Influence of marginal variation

The influence of the marginal variation on classification error seems less dramatic 
than that of the multivariate dependence. For n = 50, variations in the level of mar-
ginal variability did not affect the classification error. The same holds for larger n 
(i.e. 500 and 5000) conditional on a given dependence structure. The only exception 
to the lack of influence of the variability on the classification error is with very large 
case files (n = 5000) and the high multivariate dependency model variant, where low 
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marginal variance results in a significantly lower classification error (see Figs. 3, 4, 
5, 6).

4.4  Influence of number of folds k

Classification error dropped steeply between number of folds of k = 2 and k = 5, then 
less steeply, levelling out for k ≥ 10. A typical example (Fig.  7) is with BN mod-
els with high multivariate dependence and medium overall variation, with a case 
file sample n = 500. Also, the degree of variation (height of the box whiskers in 

Fig. 3  Classification (prediction) error for all Bayesian network models, for k = 2 folds, for three case 
file sizes n. Boxplots correspond to 100 replications for each model. In each set of 6 boxplots, the first 
three are for Bayesian network models with high model variable dependency, and the second three are for 
Bayesian network models with low variable dependency
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Figs. 7, 8) in classification error declined with increasing values of k, again more 
or less stabilizing with k ≥ 10 to 20. Classification error was highly statistically cor-
related with number of folds k among all BN model variants and k values (df = 143, 
F = 114.86, p < 0.001), among BN models with high multivariate dependence 
(df = 71, F = 58.07, p < 0.001) and low multivariate dependence (df = 71, F = 55.22, 
p < 0.001), and among BN models with high (df = 47, F = 37.23, p < 0.001), medium 
(df = 47, F = 37.23, p < 0.001), and low (df = 47, F = 37.16, p < 0.001) variable 
variation.

Fig. 4  Classification (prediction) error for all Bayesian network models, for k = 5 folds, for three case 
file sizes n. Boxplots correspond to 100 replications for each model. In each set of 6 boxplots, the first 
three are for Bayesian network models with high model variable dependency, and the second three are for 
Bayesian network models with low variable dependency
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The variation (SE) in classification error rates declined, as expected, with 
increasing numbers of replicated runs, more or less levelling out past about 30 
runs (Fig. 9) The degree of variation started and remained greater with smaller 
values of k, and took a higher number of replicate runs to achieve an equivalent 
levelling as with runs with larger values of k.

Fig. 5  Classification (prediction) error for all Bayesian network models, for k = 10 folds, for three case 
file sizes n. Boxplots correspond to 100 replications for each model. In each set of 6 boxplots, the first 
three are for Bayesian network models with high model variable dependency, and the second three are for 
Bayesian network models with low variable dependency
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4.5  Overall performance relationships

We plotted a typical example of classification accuracy (the converse of classifica-
tion error) from BN models with high multivariate dependence and medium overall 
marginal variation, for simulated case file sample size of n = 500, across the seven 
k-fold values (Fig. 2b) to compare with our initial hypotheses (Fig. 2a). Results sug-
gest that the effect of increasing the number of k folds on classification accuracy 
best fits the asymptotic exponential hypothesis (curve b in Fig. 2a), with an initial 
surge in accuracy with low numbers of k-folds, followed by progressively decreasing 

Fig. 6  Classification (prediction) error for all Bayesian network models, for k = 20 folds, for three case 
file sizes n. Boxplots correspond to 100 replications for each model. In each set of 6 boxplots, the first 
three are for Bayesian network models with high model variable dependency, and the second three are for 
Bayesian network models with low variable dependency
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Table 4  Classification error, ranging [0,1], for 3 case file sample sizes n and 7 values of k folds, across 6 
Bayesian network (BN) model variants

BN model variants are denoted by their degree of multivariate dependence (Dep = high dependence, 
Indep = independence) and degree of covariates variability (low, medium, high) (see Table 3)

BN model variant

n k Dep, low variation Dep, 
medium 
variation

Dep, high 
variation

Indep, low 
variation

Indep, 
medium vari-
ation

Indep, 
high vari-
ation

5000 2 ~ 0.27 ~ 0.29 ~ 0.29 ~ 0.6 0.6 0.6
5000 ≥ 5 ~ 0.2 ~ 0.29 ~ 0.29 ~ 0.58 ~ 0.58 ~ 0.58
500 2 ~ 0.42 ~ 0.42 ~ 0.38 ~ 0.7 ~ 0.7 ~ 0.7
500 5 ~ 0.37 ~ 0.36 ~ 0.33 ~ 0.7 ~ 0.7 ~ 0.7
500 ≥ 10 ~ 0.35 ~ 0.35 ~ 0.3 ~ 0.7 ~ 0.7 ~ 0.7
50 2 ~ 0.68 ~ 0.66 ~ 0.65 ~ 0.75 ~ 0.72 ~ 0.72
50 5 ~ 0.63 ~ 0.61 ~ 0.6 ~ 0.74 ~ 0.7 ~ 0.7
50 ≥ 10 ~ 0.6 ~ 0.6 ~ 0.6 ~ 0.76 ~ 0.68 ~ 0.68

Fig. 7  Classification (prediction) error for the Bayesian network model with high variable dependence 
and medium overall variation, with data set of size n = 500. Each boxplot corresponds to one value of k 
with 100 replications
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gains on accuracy with greater numbers of k-folds, with means generally stabilizing 
with k ≥ 20 although with little statistical difference past k = 10.

4.6  Optimal values of k

Finally, we interpreted the above results to determine optimal values of k  (kop) by 
BN model variant and case file sample size n (Table 5). We define optimal values 
of k as the minimum number of folds (to avoid undue computational complexity) 
for which the classification error rate is stable (the decrease in error with increasing 
number of folds is less than  10−3).

With very large case files (n = 5000),  kop  =  5 folds seemed sufficient across 
all BN model variants. With smaller case files, however, the BN model variant 
played a role in determining  kop: BN models with higher multivariate dependence 
tended to warrant higher numbers of folds, i.e.,  kop  =  10 in most cases but the 

Fig. 8  Log-likelihood loss for the model with high dependence and medium overall variation, with data 
set of size n = 500. Each boxplot corresponds to one value of k with 100 replications. Likelihood values 
are not finite (do not converge) for k ϵ{{n − 1, n − 2, n − 5}, so those presented here are only for k ϵ {2, 
5,10, 20}
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ones mentioned further. For n = 500 and BN models with high independence of 
variables, regardless of variation in variable values,  kop = 2 folds seem to suffice. 
For a very low but possibly realistic sample size (n = 50) the optimal k was 10 

Fig. 9  Variability (running standard error, SE) of classification error as a function of number of replicate 
runs of k-fold cross-validation. Results are from Bayesian network models with high dependency and 
medium variation among variable values, with a simulated case file sample size of n = 500, for 7 values 
of k

Table 5  Optimal values of k  (kop), by Bayesian network (BN) model variant (see Tables 3, 4)

n BN model variant

Dep, low vari-
ation

Dep, 
medium 
variation

Dep, high vari-
ation

Indep, low 
variation

Indep, 
medium 
variation

Indep, high 
variation

5000 kop = 5 kop = 5 kop = 5 kop = 5 kop = 5 kop = 5
500 kop = 10 kop = 10 kop = 10 kop = 2 kop = 2 kop = 2
50 kop = 10 kop = 10 kop = 5 kop = 10 kop = 10 kop = 10
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except for when there is high marginal variation and high multivariate depend-
ence, when five folds are enough.

4.7  Computation time

CPU elapsed times for calculating classification error and log-likelihood loss were 
highly statistically correlated (Pearson r = 0.971, p < 0.001, n = 108 cross-valida-
tion combinations of k folds, data set sizes n, and model structures of variance and 
dependence) and nearly identical in values. Using the computer described in Meth-
ods, CPU time for computing classification error across all values of n and all k ≤ 20 
averaged 4.0 s (SD 2.9, minimum 0.8, maximum 11.1). Computation time differed 
at most by being 8 s longer with k = 20 compared with k = 2.

However, computation time greatly increased with larger size data sets. With 
n = 50, CPU time averaged 18.6 s (SD 0.8, minimum 17.3, maximum 20.1); and 
with n = 500, CPU time averaged 257.4 s (SD 105.4, minimum 189.5, maximum 
480.4). Again, this was across all values of k = n − 5, n − 2, and n − 1 (LOO). 
The longest computation time we encountered was the maximum time for calculat-
ing log-likelihood loss with n = 500 and k = 499 (that is, k = n − 1, LOO), requir-
ing 597.8 s, which was about 150 times longer than the average computation time 
required with k ≤ 20. Calculations of model performance for any values of k = n − 5, 
n − 2, or n − 1 with the largest data set of n = 5000 took such an inordinate amount 
of time and CPU cycles that we terminated runs before completion, and thus do not 
present results of these combinations.

5  Discussion

Several unexpected relationships emerged from our analysis. For one, we found that 
independent of the number of data cases n, model performance measures were simi-
lar for all values of k when the variables’ dependence structure is closer to inde-
pendence, but they differed with a greater degree of dependence and when n was 
50 or 500. For another, when n was 50, we found that  kop was 5 or 10, depending on 
the variability; and when n was 500,  kop was either 2 or 10 (Table 5). Both measures 
took surprisingly different values for the dependent versus the independent cases.

Note that  kop was greater with BN models with high dependency among predictor 
variables, but this dependency was highest with intermediate values of sample size n 
(Table 5). Although this seems like an anomaly, it may likely be due to spurious cor-
relation, explained in that dependence is more easily represented and modelled more 
accurately in the folds, whereas independence is more difficult to detect because of 
spurious correlations that each fold might erroneously exhibit. Such spurious cor-
relations occurring with folds may complicate our originally hypothesis that bias 
declines (and variance increases) monotonically with increasing k.

Cross-validation of a discrete Bayesian network is generally conducted along 
the lines of our work here, where a given model structure with a fixed set of prob-
ability parameters is tested against a series of k folds of cases (e.g., Constantinuo 
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et  al. 2016; Forio et  al. 2015; Hammond and Ellis 2002). However, it is also 
possible to conduct cross-validation by reparameterizing the probability values 
in the model, or even restructuring the model, for each successive fold. These 
approaches would add further complication in the validation process and par-
ticularly in parsing out optimal values of k. Our results may need to be revisited 
should such validation procedures include model reparameterization and restruc-
turing with each fold.

Our results pertain to overall classification error, but our general approach 
could be repeated with binary output models to also track Type I and II error 
rates (false positives and false negatives) are of interest. Further, it would be pos-
sible to calculate Type I and II error rates for models with > 2 output states by 
sequentially focusing on error rates of each state and considering error rates of all 
other states combined, thereby collapsing the output to a series of binary states. 
We have not conducted that analysis here but with our balanced sets of simulated 
cases, drawn from statistical distributions, such results would not have changed 
outcomes of optimal values of k. They may differ in models where variables do 
not follow generalized statistical distributions. Also, our findings likely hold for 
very simple models but are unclear for very complex models with many more 
variables, more linkages among variables, and greater model depth.

We confirmed our assumption and previous assertions that computation time 
increased at least exponentially, becoming intractable, with the higher values of 
k = n − 5, n − 2, and especially n − 1, and particularly with large data sets con-
sisting on the order of our test set of n = 5000 cases. This has important implica-
tions for validation of “big data” sets which have become popular in developing 
and training prediction models (LaDeau et al. 2017; Marcot and Penman 2019). 
Fortunately, we have demonstrated that validation results with k ≤ 20 produce 
fully acceptable results and require far less computation time.

6  Conclusions

Most uses of k = 10 in the literature (as reviewed above) can be supported by our 
findings, but in many cases k = 5 would suffice with BN models with independent 
variable structures regardless of variation in variable values, particularly where 
saving time and computational complexity is an issue.

Our findings are likely to be generally robust for BN models with variables 
exhibiting high independence or high dependence, and various levels of variation 
in variable values. However, clearly, many forms of BN models can be created, in 
which cases when they deviate from our contrived examples it may be prudent to 
slightly increase the number of k folds over the optimal values we present here.
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