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Use of Expert Systems in Wildlife-Habitat Modeling

BRUCE G. MARCOT

Abstract.—The next phase of modeling wildlife-habitat relationships may involve use
of expert systems technology. An expert system is a computer program that reasons
like @ human expert to solve such problems as diagnosis and classification. A wildlife-
habitat expert system may predict response of wildlife species to habitat conditions
and changes and may use probabilistic structures of program control and computa-
tion, Two demonstration programs (BRUSH and GUILD) illustrate such predictions
by using “‘data-driven’” reasoning, program explanations of its reasoning process,
and capabilities for suggesting habitat-management prescriptions. Existing computer
programs that help create and maintain expert systems may reduce model develop-
ment time by an order of magnitude. Questions of utility. audience, cost, peer review,
and validation require careful scrutiny. Other factors may include deciding which
human experts to model the reasoning process after and selecting appropriate prob-

lems for expert system formalism.

Predicting the response of wildlife species to habitat condi-
tions (vegetation type and successional stage) and changes in
conditions is the goal of many wildlife managers and land-
use planners. Currently, data storage and retrieval systems
{e.g., Patton 1978; Marcot 1980; Verner 1980) and models
that index habitat capability, such as those of the U.S. Fish
and Wildlife Service (Schamberger et al. 1982) and USDA
Forest Service (Hurley et al. 1982), are being developed and
used.

A next generation of predictive modeling may extend
these approaches by using computers to integrate informa-
tion from field studies, the literature, and expert opinion.
Computer software engineering that would aid in predicting
the response of species to habitat conditions is known as
expert systems engineering. An expert system is a computer-
based consultation program consisting of facts and expert
knowledge to help classify, diagnose, or plan (Duda and
Shortliffe 1983). The use of currently available data storage
and retrieval systems and habitat-capability models requires
the user to ask all pertinent questions and develop lines of
reasoning, whereas with expert systems the computer con-
ducts much of the querying and reasoning by using built-in
rules. In this chapter I review expert systems technology,
present two demonstration models, discuss expert perfor-
mance and the use of expert systems to build knowledge
bases, and present guidelines and cautions for the possible
next generation of wildlife-habitat models.

Expert systems technology: A brief review

An expert system is a computer program that uses facts
and *‘if-then’’ choices or rules to solve a problem in technol-
ogy or management. Specifically, expert systems may be
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used in problems of classification, such as classifying
chematographic profiles or habitat conditions, or diagnosis,
such as diagnosing patients’ symptoms or habitat suitability
for wildlife species. Hundreds of such rules may be com-
bined into what is termed *‘rule networks.” The expert sys-
tem transcends traditional data storage and retrieval pro-
grams in its ability to keep track of its own reasoning
process, to handle uncertainty and rules of thumb in compu-
tations, and to revise its own data base and logic structure
from experience. Expert systems aimed at practical applica-
tion often reach performance levels comparable to those of a
human expert in some specialized problem domains (Nau
1983).

Expert system programs have been used to assist in the
diagnosis of medical symptoms (MYCIN; Shortliffe 1976), in
the interpretation of mass spectroscopy (DENDRAL: Lind-
say et al. 1980), and in the design of computer hardware
configuration (R1; McDermott 1982). A consulting system
for mineral exploration, PROSPECTOR (Duda and Short-
liffe 1983), has successfully located new mineral deposits.
Duda and Shortliffe (1983), Hayes-Roth et al. (1983). and
Nau (1983) have reviewed other system applications. None
of the existing applications, however, has addressed prob-
lems in ecology or wildlife management.

‘An expert system consists of two integrated parts: a
knowledge base and a logic control structure, sometimes
referred to as an “‘inference engine””’ (Brachman et al. 1983).
A knowledge base is a coded list of fundamental facts and a
set of rules for using the facts under different contexts. Facts
may be represented as relations, such as **Natal roosts of
hoary bats = Dense tree foliage."’ Rules may be represented
as if-then syllogisms, such as shown in Figure 23.1, (Note
the use of a probability statement in line 3850, rule R11.)

The inference engine is a set of controls consisting of gen-
eral problem-solving knowledge (Buchanan et al. 1983). An
inference engine is essentially the logic structure of program
execution. One example of a high-level control rule may be
Lo execute a particular subset of facts and rules that pertain
to deducing species’ use of deciduous foliage in a forest
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3630 REM

3640 REM ****** RULES FOR DEDUCTIVE INFERENCE ******

3650 REM
3660 DATA “BRUSHFIELD"

3670 DATA "R1", “IF", "HAS <20% WOO0ODY VEGETATION COVER", "THEN", “'IS GRASS STAGE"
3680 DATA "R2", “IF", "CONTAINS >5% COVER BULL THISTLE", “THEN", “IS GRASS STAGE"
3690 DATA “A3", “IF", "HAS MOST SHRUBS <2 M TALL", "THEN", "IS EARLY STAGE"

3700 DATA "R4", "IF", ""HAS SHRUBS =2 M TALL", "HAS >30% UTTER COVER", "THEN"

3710 DATA IS LATE STAGE"

3720 DATA “RS", "IF", "'IS GRASS STAGE", “"CONTAINS >5% COVER Festuca OR Elymus"

3730 DATA

"THEN", "HAS LESSER GOLDFINCH"

3740 DATA "R6", "IF", "'IS GRASS STAGE", “CONTAINS SNAGS ==>3 M TALL", "THEN"

3750 DATA  "HAS WESTERN BLUEBIRDS"

3760 DATA “R7", “IF", "'IS EARLY STAGE", IS ADJACENT TO MATURE STANDS"

3770 DATA

3780 DATA  "HAS MOUNTAIN QUAIL"

“CONTAINS LARGE DOWN LOGS", "IS <1 KM FROM OPEN WATER™, “THEN"

3790 DATA “R8", “IF", “'IS EARLY STAGE", "HAS DENSE, DECIDUOUS BRUSH", “THEN"

3800 DATA

“HAS POTENTIAL FOR WRENS"

3810 DATA “R&", "IF", "HAS POTENTIAL FOR WRENS", IS >45% SLOPE", "'THEN"

3820 DATA  “HAS WRENTITS"

3830 DATA “R10", "IF", "HAS POTENTIAL FOR WRENS", IS <45% SLOPE"

3840 DATA

"“HAS DENSE BRUSH™, “THEN", "HAS BEWICK'S WRENS"', "'HAS WRENTITS"

3850 DATA "R11", “IF", IS LATE STAGE", "CONTAINS ALDER IN RIPARIAN STRIPS™, "THEN"

3860 DATA

""HAS WILSON'S WARBLERS"", ""HAS MACGILLIVRAY'S WARBLERS (P < 0.01)"

3870 DATA “R12", “|F", “IS LATE STAGE™, “IS ADJACENT TO MATURE STAND"

3880 DATA
3890 DATA "STOP"

""CONTAINS SNAGS >4 M TALL", “THEN", “HAS DUSKY FLYCATCHERS"

Figure 23.1. A computer-gencrated listing of rules used in program BRUSH.

canopy. Inference engines are employed to quickly trim a
myriad of possible solutions to only a few, which then are
filtered by prompting the user for more specific information.
Inference control strategies include evidence-to-hypothesis
reasoning (forward-chaining), hypothesis-to-evidence rea-
soning (backward-chaining), or some combination. Techni-
cal reviews of inference control structures may be found in
Winston (1977) and Stefik et al. (1983).

Some expert systems represent their control strategy in
terms of conditional states or probabilities. Probabilistic
control structures vary widely in expert systems, The reason
for using uncertainty measures is to increase reliability by
combining evidence. A probabilistic approach may prove
useful for predicting wildlife responses to habitat conditions
by computing probabilities that certain specics are present,
given that specific habitat conditions have been observed.

The construction of an expert system (Hayes-Roth et al.
1983; Weiss and Kulikowski 1984) begins with a dialogue
between the knowledge engineer (a computer programmer)
and the human expert. First, the problem is clearly identi-
fied. For example, a problem statement may be to diagnose
habitat conditions of a particular vegetation type and succes-
sional stage in a particular geographic area for the purpose of
deducing the presence of species of birds. Second, charac-
teristics of the problem, such as species-habitat interactions,
are represented and coded as concepts, facts, and decision
rules. Facts may include a classification system of habitats
that could assist in predicting species presence. The dialogue
becomes critical at this stage, because human experts often
apply rules of inference and rules of thumb that are ar-
ticulated and codified only after careful discussion with the
knowledge engineer. Other methods of obtaining expertise
may include surveys of a priori professional judgments, such

as those gathered by the Delphi technique (Zuboy 1981). The
Delphi technique is very powerful and, when properly used,
can give a high degree of reliability. At this stage, whether
the original problem was defined too vaguely, broadly, or
incompletely or whether the problem itself cannot be repre-
sented well in this framework will become clear. Usually one
then returns to step | and refines or redefines the problem. In
the third step, the system of rules and facts is tested to verify
that they are encoded adequately (Buchanan et al. 1983),
Finally, peer review and field validation are used for deter-
mining whether the fundamental facts and rules are incom-
plete or fallacious.

AN EXPERT SYSTEM APPROACH TO WILDLIFE-HABITAT
MODELING: TWO EXAMPLES

In general, an expert system that predicts wildlife re-
sponse to habitat conditions should (1) identify species
which may occur together under general habitat conditions,
such as forest cover types and stages of development: (2)
evaluate the response of a species or a set of species to
changes in habitat conditions: (3) suggest which habitat attri-
butes would best predict species’ patterns of abundance; (4)
allow the user to offer information as well as prompt the user
for specific information; (5) give a rationale for hypotheses
or conclusions reached; (6) be designed to be updated with
new facts and rules; and (7) prescribe habitat conditions and
recommend methods for creating these conditions to main-
tain or enhance particular species.

An example of a narrowly defined problem domain for use
in wildlife management is predicting bird species’ presence
in a brushfield habitat following clearcut timber harvesting in
the Coast Range of northwestern Califormia. Two demon-
stration programs, in which 1 have encoded my own knowl-
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4030 REM

4040 REM ****** HYPOTHESES FOR DEDUCTIVE INFERENCE ******
4050 REM

4060 DATA “HAS LESSER GOLDFINCH"

4070 DATA "HAS WESTERN BLUEBIRDS"

4080 DATA ''HAS WRENTITS"

4090 DATA '‘HAS BEWICK'S WRENS"

4100 DATA "HAS MOUNTAIN QUAIL"

4110 DATA “HAS WILSON'S WARBLERS"

4120 DATA “HAS MACGILLIVRAY'S WARBLERS"

4130 DATA "HAS DUSKY FLYCATCHERS™

4140 DATA "'STOP"

4150 END

Figure 23.2. A computer-generated listing of contentions
regarding presence of eight bird species in brushfield
habitats. taken from the demonstration expert system
BRUSH written in BASIC.

edge and control rules, will serve to highlight some of the
features outlined above.

A rule-based demonstration program BRUSH was written
in the BASIC programming language on an IBM Personal
Computer and was modeled after the examples in Winston
(1977) and Duda and Gaschnig (1981). I supplied data on
habitat conditions in brushfields of Douglas-fir (Pseudotsuga
menziesii) resulting from clearcutting. Through a series of 12
rules of species-habitat relationships (Fig. 23.1), BRUSH de-
duces the suitability of the site for a variety of bird species.
BRUSH's contentions that establish suitability of habitat
conditions for eight bird species are presented in Figure 23.2.

A sample run of BRUSH (Fig. 23.3) demonstrates the for-
ward-chaining or data-driven nature of the control structure
and the ability of the program to trace and present its own
lines of reasoning. A more advanced version of BRUSH may
(1) trigger hypotheses from conditional probabilities; (2) in-
corporate additional rules and hypotheses; (3) allow the user
to suggest solutions and to volunteer information; and (4)
learn from previous query sessions which rules may be more
likely to provide correct deductions under different combi-
nations of responses.

BASIC is a poor language for rule-based deduction sys-
tems, although an earlier, full-scale wildlife-habitat retrieval
model that used some elements of expert system program-
ming successfully employed BASIC on the Tektronix 4050-
series microcomputer (Marcot 1980). BASIC is not designed
to manipulate symbols and names extensively, as would be
necessary in an expert system. However, the programming
language LISP is specifically designed for relating and com-
paring symbols and is commonly used in expert system pro-
gramming. I wrote a second example program, GUILD, in
LISP (dialect ALISP) on a CDC Cyber 170/720 mainframe
computer to demonstrate some advantages of this symbol-
based language.

GUILD is based on lists of items and their properties that
allow search and retrieval of entities whose properties have
user-specified values. For example, the entity “‘Species-
name’’ is assigned a number of properties, including **Diet,”
*““Foraging-Substrate,"” and ‘‘Habitat.”” *‘Habitat"" itself is
composed of further properties, specifying vegetation types
and successional stages. The values of properties are qualita-

147

RUN
AR R R PROGRAM ‘BRUSHI LR R R R
DEMONSTRATION EXPERT SYSTEM
BASED ON RULE-HYPOTHESIS STRUCTURE
AND FORWARD-CHAINING INFERENCE
This program uses 12 rules to establish one of the
following 8  hypotheses;
BRUSHFIELD HAS LESSER GOLDFINCH
BRUSHFIELD HAS WESTERN BLUEBIRDS
BRUSHFIELD HAS WRENTITS
BRUSHFIELD HAS BEWICK'S WRENS
BRUSHFIELD HAS MOUNTAIN QUAIL
BRUSHFIELD HAS WILSON'S WARBLERS
BRUSHFIELD HAS MACGILLIVRAY'S WARBLERS
BRUSHFIELD HAS DUSKY FLYCATCHERS

Respond with YES, NO, or WHY,

Is this true:  BRUSHFIELD HAS <20% WOODY VEGETATION COVER? NO
Is this true:  BRUSHFIELD CONTAINS >5% COVER BULL THISTLE? NO
Is this true: BRUSHFIELD HAS MOST SHRUBS <2 M TALL? KO

Is this true:  BRUSHFIELD HAS SHRUBS =2 M TALL? YES

Is this true:  BRUSHFIELD HAS >30% LITTER COVER? YES

Rule R4 deduces BRUSHFIELD IS LATE STAGE

Is this true:  BRUSHFIELD CONTAINS ALDER IN RIPARIAN STRIPS? NO
Is this true:  BRUSHFIELD IS ADJACENT TO MATURE STAND? YES
Is this trug; BRUSHFIELD CONTAINS SNAGS = 4 M TALL? WHY
| am trying to use Rule R12

The inference structure has already deduced that:

BRUSHFIELD IS LATE STAGE

BRUSHFIELD IS ADJACENT TO MATURE STAND

IF:

BRUSHFIELD CONTAINS SNAGS =>4 M TALL

THEN:

BRUSHFIELD HAS DUSKY FLYCATCHERS

Is this true: BRUSHFIELD CONTAINS SNAGS =4 M TALL? YES

Rule R12 deduces BRUSHFIELD HAS DUSKY FLYCATCHERS

| conclude that BRUSHFIELD HAS DUSKY FLYCATCHERS.
Figure 23.3. A sample run of BRUSH showing features of
forward-chaining deduction. The program progresses through
hypotheses by querying the user for pertinent information.
The user's responses (underlined) may include **Why,"" from
which the system discloses its reasoning process that led to
the asking of a particular question.

tive codes, such as diet items and foraging substrates, or
continuous variables, such as mean nest height and home
range size.

A set of LISP functions can then be called to access and
manipulate the data base. A brief dialogue with GUILD
generated a partial list (Fig. 23.4) of breeding species repre-
senting the potential negative impact of a reduction of brush
foliage volume in clearcuts 6-10 years old. Field-derived
estimates of species densities before and after the brush re-
duction are given by the program, along with probabilities of
species presence (field-derived estimates of percent occur-
rence of the species in sites having the specified foliage
volume levels). Specifying the **mitigate” function triggered
the system to output further information, including a set of
prescriptions for brush management and species’ expected
densities resulting from the mitigation activities, estimated
from field-derived regressions of species’ densities on brush
volumes. A more advanced version of GUILD may suggest
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PROGRAM 'GUILD": A LISP-BASED QUERY SYSTEM

Part I: Development, Testing, and Application of Wildlife-Habitat Models

? (SETQ BEFORE-STAGE LATE-SHRUB AFTER-STAGE EARLY-SHRUB)

7 (TELL-IMPACT)
HABITAT STAGE
DENSITY (N/40 HA) PROBABILITY OF OCCURRENCE
BEFORE AFTER BEFORE AFTER
LATE- EARLY- PERCENT LATE- EARLY
SPECIES SHRUB SHRUB CHANGE SHRUB SHRUB
BLACK-HEADED-GROSBEAK 288 55 —a1 0.95 0.65
CALLIOPE-HUMMINGEIRD 2938 0.0 —100 0.29 0.00
CHESTNUT-BACKED-CHICKADEE 2.7 23 —15 0.38 0.46
FOX-SPARROW 213 24 —91 0.33 0.31
HERMIT-THRUSH 8.5 24 —72 0.57 0.54

DO YOU WANT TO MITIGATE (Y/N)? ¥

PRESCRIPTIONS

THE 5 SPECIES IN THIS LIST REPRESENT NEGATIVE IMPACTS ON BREEDING DENSITIES BY A CHANGE IN HABITAT
STAGE FROM LATE-SHRUB TO EARLY-SHRUB. THE NEGATIVE IMPACT IS MOSTLY FROM REDUCTION OF SHRUB VOLUME AND
COVER. TO MITIGATE THE NEGATIVE IMPACTS ON SPECIES DENSITIES, THE FOLLOWING MANAGEMENT ACTIONS MAY BE

TAKEN:

THE SITE;

1) RETAIN DECIDUQUS AND EVERGREEN SHRUB COVER ALONG ALL PERMANENT AND EPHEMERAL WATERCOURSES ON

2) RETAIN OR ENCOURAGE POCKETS OF LOCALLY DENSE SHRUB COVER WITHIN THE SITE, AVERAGING AT LEAST 2 M
TALL AND 5 M ACROSS:; SUCH POCKETS MAY BE SPATIALLY ARRANGED SO AS NOT TO SUBSTANTIALLY INTERFERE WITH

REFORESTATION ACTIVITIES;

3) TOTAL SHRUB FOLIAGE VOLUME SHOULD NOT AVERAGE LESS THAN 10,000 CU. M. PER HA,

EXPECTED SPECIES DENSITIES WITH MITIGATION ACTIVITIES

’ DENSITY WITH

PERCENT
MITIGATION IMPROVEMENT
SPECIES PROCEDURES OVER NO MITIGATION
BLACK-HEADED-GROSBEAK 16.5 38
CALLIOPE-HUMMINGBIRD 14.0 47
CHESTNUT-BACKED-CHICKADEE 2.5 7
FOX-SPARROW 14.1 43
HERMIT-THRUSH 5.3 X

SRU  0.310 UNITS.

RUN COMPLETE,

Figure 23.4. A sample run of GUILD showing features of LISP program implementation. User re-
sponses are underlined. Note that program response to the “*mitigation”" option triggered an output of
possible habitat prescriptions and expected species’ densities.

to the user other habitat features that help predict and in-
fluence the species’ abundances.

Expert performance

What constitutes expert performance and lends credibility
to professional advice? We choose among experts, accord-
ing to Simon (1977), by *‘forcing the experts to disclose how
they reached their conclusions, what reasoning they em-

ployed. [and] what evidence they relied upon.’” Disclosing
the reasoning process lends credibility. Credibility also de-
pends on the expert’s actual experience in the field, his or
her contribution to the primary literature, and his or her
record of validated predictions. Expertise extends beyond
familiarity with existing literature and, especially in model-
ing, involves the ability to distinguish between realistic and
unrealistic assumptions.

An explanation facility is an important facet of an expert



Marcot: Expert Systems and Wildlife Models

Table 23.1 Knowledge-engineering system
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System Problem domain Inference structure Features

AGE General Forward-, backward-chaining; blackboard®  Flexible in knowledge representation and
processing

EMYCIN Deduction, diag- Backward-chaining Employs certainty factors

nosis
EXPERT Classification

HEARSAY-IIl General Blackboard®

KAS Deduction, diag- Forward- ang backward-chaining
nosis

0PS5 General User-defined

RLL General Agenda (flexible) priorty system

ROSIE General Rules ordered by user

Rules ordered by user

Hypotheses expressed with uncertainty
values

Supports incremental construction, test-
ing; relational data base

Chooses promising rules via heuristic
evaluation function

Flexible In representation schemes
Library of various control structures
English-like syntax

*A “blackboard” is a central control medium, used for representing partial solutions and pending program exgcutions

system because it enables the program to describe its line of
reasoning, why it is requesting certain pieces of information,
and how it reached a particular conclusion (e.g., Clancey
1983). Such disclosure also helps the system accept new
lines of reasoning (new rules or facts) and grow with its use
(Winston 1982). A disclosure of reasoning was demonstrated
above with BRUSH. The expert system may function better
than a human expert because it can easily expose for review
its chain of reasoning and inferences, allowing the user to
carefully assess its credibility. However, just as with the
human expert, output and advice from an expert system
should be viewed critically. The system is no better than the
data, relations, and reasoning processes it contains.

Quality control of the knowledge base of a wildlife-habitat
expert system should include field testing of model predic-
tions and peer review of the adequacy and accuracy of the
facts, reasoning process, and controls used in the system.
The goal would be to show explicitly, under specified field
conditions or ecological contexts, how well or how poorly a
system performed. Validation should also include a test of
the system'’s utility, i.e., applicability in an actual manage-
ment and decision-making environment. Criteria of model
validation, which may also be useful for judging “expert”
contributions to such a system, were reviewed by Marcot et
al. (1983).

Knowledge-engineering systems

Several expert-system-building tools have been con-
structed that may help reduce development time by an order
of magnitude (Table 23.1) (Barstow et al. 1983: see also van
Melle 1981). Using such tools allows programmers to com-
pile a knowledge base and to develop inference structures
without programming in general-purpose languages such as
BASIC, LISP, PROLOG, and FORTRAN. Three of the
knowledge-engineering systems—EMYCIN, EXPERT, and
KAS—are designed for specific problem domains; the others
are general-purpose systems and allow for a greater variety
of inference (control) structures, but may sacrifice some ease
of use. EMYCIN (van Melle 1979), KAS (Duda et al. 1981),

and OPSS (Forgy 1981) are all well suited to the problem of
diagnosing habitat conditions and inferring species’ re-
sponses. However. knowledge-engineering systems for use
on personal computers are coming of age (e.g., Konopasck
and Jayaraman 1984).

Questions and cautions

The effort required to produce a full-scale wildlife-habitat
expert system is likely to be measured in years of working
time (Duda and Shortliffe 1983). Although decision-support
systems are becoming increasingly common (Wagner 1982),
careful considerations of the cost, need. and utility of such
systems seem warranted. Who are the intended users and
what are their specific information needs? What specific
areas of habitat management could fit into and benefit from
an expert system approach? How should a wildlife-habitat
expert system be updated and validated? Which human ex-
perts should the reasoning processes be modeled after?

Wildlife biologists and resource planners may be the first
audience which uses such systems for assessing project im-
pacts and planning alternatives. Other specialists may later
integrate their information needs. Predicting the response of
wildlife species to habitat conditions and prescribing man-
agement activities for mitigation are two functions that can
help biologists and planners.

Validation must be an integral part of an expert system.
Many ecological problems of habitat management may be ill-
suited to the fact- and rule-based structures of expert sys-
tems. For example, problems of habitat fragmentation and
species’ interactions are poorly understood and would be
unsound candidates for expert system formalism. Three crit-
ical stages in developing a full-scale system are (1) ade-
quately specifying the problem and surveying expert knowl-
edge in a particular problem area; (2) adequately encoding
the knowledge into facts and rules of inference and deduc-
tion; and (3) validating the system with new field data to
determine whether the facts and rules have been represented
fully and correctly. Failure to attend to each of these stages
would probably result in the building of models in which
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little confidence could be placed. The expert system should
not be used to completely supplant essential field work, such
as basic research, population monitoring, wildlife inventory,
or reconnaissance for project impact assessment.

The knowledge base must be evaluated for quality, cor-
rectness, and completeness. Evaluation also reveals how
well an expert system may be expected to perform, given
missing or false information. Evaluation by domain experts,
such as avian ecologists, would help determine the accuracy
of the knowledge base and any advice or conclusions the
system provides; evaluation by users, such as habitat man-
agers, would help determine the utility of the system (Ga-
schnig et al. 1983). Characteristics of expert systems to be
evaluated include quality of the system’s decisions and ad-
vice, correctness of the reasoning techniques used, the na-
ture of the interactions with the human user, the system’s
efficiency in using facts and rules, and the system’s cost-
effectiveness. Although no expert system of wildlife-habitat
relationships has been formally evaluated, several other
types of expert systems have been (Gaschnig et al. 1983).

The relationship between errors in or incompleteness of
the knowledge base and errors in the output of an expert
system is variable, depending on the level of the rules in the
logic structure and the frequency with which the rules are
called. In some cases, erroneous or missing rules may accen-
tuate errors in the output. Sensitivity analysis of model out-
put to changes or additions of the knowledge base would
help quantify the relationship and thus the need for correc-
tive actions. For example, sensitivity analysis of the MYCIN
program revealed that the certainty factors used in the pro-
gram to weight different responses influenced the output less
that did the semantic and structural context of the rules per
se (Gaschnig et al. 1983).

Error rates of fully evaluated systems, such as MYCIN,
R1, or PROSPECTOR, are generally low as long as the sys-

tems are used within appropriate problem domains. Such
evaluations may serve to show the usefulness and evolution-
ary development of a wildlife-habitat expert system (e.g.,
see Buchanan and Shortliffe 1983). Our current knowledge
of wildlife-habitat relationships requires much additional de-
velopment and testing, and a wildlife-habitat expert system
cannot be expected to perform any better than our own
knowledge allows. The greatest benefit of such an expert
system, however, would be in distributing existing expertise
in narrowly defined problem domains (such as response of
songbirds to clearcutting Douglas-fir forest) to users that re-
quire but lack such expertise.

It is my opinion that an expert systems approach that in-
corporates field-monitoring information, discloses its rea-
soning process, and helps prescribe habitat conditions to suit
particular species may be a valuable tool for habitat man-
agers and decision makers, if adequately validated and ap-
plied to appropriate problem domains. However, risks of
applying untested systems may be high if pertinent facts and
reasoning processes are developed in isolation from exten-
sive peer review and field validation.
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