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ABSTRACT Conserving tidal-marsh bird communities requires strategies to address continuing pressures
from human development to the effects of increasing rates of sea-level rise. Knowing tidal-marsh bird
distributions and population sizes are important for developing these strategies. In the Northeast United
States, where estimates of sea-level rise are 3 times higher than the global average, 5 bird species are tidal-
marsh specialists: clapper rail (Rallus crepitans), willet (Tringa semipalmata), Nelson’s sparrow (Ammospiza
nelsoni), saltmarsh sparrow (A. caudacuta), and seaside sparrow (A. maritima). We used a regional marsh bird
survey to develop Bayesian network models to identify factors that influence patch-scale species density and
to estimate regional population sizes. We modeled species density as a function of habitat covariates at the
patch, local, landscape, and regional spatial scales. Densities were most sensitive to patch location and
dimension, patch geomorphic setting, indices of human development, and changes in mean sea level. We
estimated 110,000 clapper rails (95% CI¼ 61,000–159,000), 111,000 willets (95% CI¼ 70,000–152,000),
7,000 Nelson’s sparrows (95% CI¼ 4,000–10,000), 60,000 saltmarsh sparrows (95% CI¼ 40,000–80,000),
and 234,000 seaside sparrows (95% CI¼ 112,000–356,000) from the United States–Canada border to, and
including, the mouth of the Chesapeake Bay, Virginia, USA. Our abundance estimates can be used to
identify priority conservation areas at multiple geographic scales and our models help identify key habitat and
landscape components for tidal-marsh restoration and management to benefit tidal-marsh birds and can be
modified for other species. � 2018 The Wildlife Society.

KEY WORDS Bayesian network, density, model-based, monitoring, Northeast USA, predictive model, tidal-marsh
birds.

Estimation of wildlife population status and trends is an
important initial step in guiding conservation priorities and
management actions (McCarthy and Possingham 2007,
Jones et al. 2013, Moqanaki et al. 2018).Without knowledge
of wildlife population sizes and basic demographic param-
eters, it is difficult to set meaningful population objectives, an
activity mandated by many government agencies charged
with managing wildlife. The absence of accurate population

estimates leads to biased or spurious perceptions of
conservation priorities, limits the ability to determine the
effects of management actions, and can lead to inefficient
uses of limited funding for conservation.
The North Atlantic coast of the United States (Maine to

Virginia; i.e., Northeast) tidal salt marshes support several
specialist bird taxa adapted to tidal marshes that are high
conservation priorities (Greenberg 2006, Rosenberg et al.
2016). In the Northeast, the extent of tidal marshes has been
reducedby�38%percent since the1800s (Gedan andSilliman
2009) and sea-level rise contributes to the declining trend in
salt marsh area (Dahl 2011). Five specialist birds are of
concern in theNortheast region: clapper rail (Rallus crepitans),
willet (Tringa semipalmata), Nelson’s sparrow (Ammospiza
nelsoni), saltmarsh sparrow (A. caudacuta), and seaside sparrow
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(A. maritima). These 5 species are recognized as conservation
priorities by various designations, such as Species of Greatest
Conservation Need in state Wildlife Action Plans (e.g.,
Maryland Department of Natural Resources 2015, New
Hampshire Fish and Game Department 2015), high concern
on the 2016Watch List (North American Bird Conservation
Initiative 2016), and globally endangered on the International
Union for Conservation of Nature Red List (saltmarsh
sparrow; BirdLife International 2017). Tidal-marsh birds are
not adequately sampled by theNorthAmericanBreedingBird
Surveybecause these roadside countsdonot sufficiently sample
wetlands (Gibbs and Melvin 1993, Lawler and O’Connor
2004). As a result, tidal-marsh bird population status and
trends have only recently been estimated (Wiest et al. 2016,
Correll et al. 2017) and conservation strategies setting specific
population objectives are now being developed. Three species
have documented negative population trends: the global
population of saltmarsh sparrow is declining by 9.0% annually,
and within the Northeast, clapper rails are declining by 4.6%
annually and Nelson’s sparrows (Acadian subspecies A. n.
subvirgatus) are declining by 4.2% annually (Correll et al.
2017). Focusing conservation efforts on coastal marshes in the
Atlantic Flyway and setting population objectives is a priority
for the Atlantic Coast Joint Venture, making population
estimates especially relevant for focusing regional and state-
level actions that could reduce the declines and stabilize the
population trajectories for these specialist birds (http://acjv.
org/flagship-species-initiative, accessed 23 Jun 2018).
Initial population estimates (Wiest et al. 2016) provided

information at the regional scale (Northeast) but did not
predict abundance in unsurveyed marshes and were not
spatially explicit. Therefore, we used a Bayesian modeling
framework to predict species density and estimate population
sizes across all Northeast tidal marshes and to determine
factors that influenced density. Bayesian networks (BNs) can
be structured to depict causal, correlational, or logical
relationships among variables, linked by conditional proba-
bilities (Koski and Noble 2011). Variables are typically
depicted with discrete nominal, cardinal, ordinal, or
continuous states, each with associated probability values
calculated according to Bayes’ Theorem. BNs can be more
robust to collinearity and variations in sample size than
traditional frequentist, multivariate approaches (Sebastiani
and Perls 2008, Pawson et al. 2017). Additionally, BN
machine-learning algorithms derive network model struc-
tures and probability parameters to better deal with missing
data and produce models representing working hypotheses
that can be further calibrated, evaluated, and updated with
new data (Marcot et al. 2006, Marcot 2012). Our primary
goal was to use BNs to develop spatially explicit estimates of
density and abundance that could be used to set population
objectives at the state and regional levels and focus
conservation and management actions. The specific objec-
tives of our descriptive study were to develop BN models to
estimate density in all marsh patches, evaluate the sensitivity
of species density to different patch characteristics, and
develop regional population estimates covering surveyed and
unsurveyed patches.

STUDY AREA

We conducted this research during the spring and summer,
2011–2012, in predominantly polyhaline tidal marsh from
Lubec, Maine, USA to the mouth of the Chesapeake Bay,
Virginia, USA. Our study area consisted of 280,722 ha of
coastal marsh classified as Acadian coastal salt marsh and
Northern Atlantic Coastal Plain tidal salt marsh (Comer
et al. 2003, Ferree and Anderson 2013). Acadian coastal salt
marsh ranges from Newfoundland, Canada to northern
Massachusetts, USA and is characterized by small patches
interspersed in the rocky Gulf of Maine coastline. Northern
Atlantic Coastal Plain tidal salt marsh ranges primarily from
Cape Cod, Massachusetts to the Chesapeake Bay, and
irregularly from Cape Cod to the southern coast of Maine.
Coastal Plain marshes are more extensive in area than
northern Acadian marshes and are associated with the
saltwater bays of barrier beaches and the outer mouths of
tidal rivers. Both marsh types were largely dominated by
smooth cordgrass (Spartina alterniflora) and saltmeadow
cordgrass (S. patens), and included patches of other
graminoids and forbs (Comer et al. 2003, Ferree and
Anderson 2013). Common fauna included fiddler crabs (Uca
spp.), marsh crabs (Sesarma spp.), grass shrimp (Palaemonetes
spp.), marsh periwinkle (Littoraria irrorata), eastern muds-
nail (Tritia obsoleta), ribbed mussel (Geukensia demissa),
eastern oyster (Crassostraea virginica), diamondback terrapin
(Malaclemys terrapin); and various fish, bird, and mammal
species (Bertness 1999).
The average day of the first bloom in our study area was 30

May in Lubec, Maine and 3 April in Fisherman Island
National Wildlife Refuge, Virginia (spring index based on a
30-year dataset, 1981–2010; http://data.usanpn.org/npn-
viz-tool/, accessed 20 Aug 2018). Precipitation at the
northern boundary of our study area averaged 117 cm/year
and temperatures averaged �108C to �18C in January and
128C to 248C in July. At the southern boundary,
precipitation averaged 107 cm/year and temperatures aver-
aged �18C to 88C in January and 218C to 308C in July. Our
study area was situated in a highly developed coastal region of
the United States that has a history of human impacts to
large drainage systems (e.g., Connecticut, Hudson, Dela-
ware, and Susquehanna rivers) and supports high-traffic
ports (e.g., Boston, New York City, and Philadelphia).
Historical land use of tidal marshes in the region included
filling for development, grazing and haying, ditching for
mosquito control, and the creation of impoundments
(Greenberg 2006).

METHODS

Design-Based Abundance Estimates and Patch
Attributes
We developed BN models and regional population estimates
based on previous work summarized here. We surveyed the 5
tidal-marsh specialist birds as part of a Northeast tidal-marsh
bird survey (Wiest et al. 2016) where we counted individuals
based on visual and auditory detections (Conway 2011). We
distributed 1,780 unique survey points across 8 subregions
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defined by geomorphology (Fig. 1) and surveyed these points
2–3 times (Wiest et al. 2016). We surveyed 1,642 points
during the 2011 breeding season (167 points visited only
twice) and 1,714 points during 2012 (91 points visited only
twice; Wiest et al. 2016). We delineated the tidal marsh in
our study area into habitat patches and used the unmarked
package in Program R (Fiske and Chandler 2011; www.r-
project.org, accessed 8 Aug 2014) to estimate density, and in
turn abundance, in each sampled marsh patch (Wiest et al.
2016; design-based abundance models). We used unmar-
ked’s multinomPois function to estimate abundance using a

general multinomial-Poisson mixture model (Royle 2004).
We accounted for detection probability in our models using
the time-of-detection method (Farnsworth et al. 2002), and
we made the assumption that populations were closed during
our sampling period (i.e., the breeding season; Wiest et al.
2016).
For each patch, we compiled 22 covariates describing

location and dimension, land cover, geomorphic setting, sea-
level trend, and human disturbance (Tables 1 and 2;
Supplemental Material A, available online in Supporting
Information). We chose patch features that influence bird

Figure 1. The sampling universe for surveys of tidal-marsh birds in the Northeast United States, delineated into subregions, 2011–2012. Subregions are
composed of 40-km2 hexagons containing estuarine intertidal emergent wetlands. We developed subregion boundaries based on suggestions by Conway and
Droege (2006).
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species distribution and abundance and that can be obtained
from remote sensing data for the entire Northeast (Comer
et al. 2003; Conway and Droege 2006; Cahoon et al. 2009;
Ferree and Anderson 2013; National Oceanic and Atmo-
spheric Administration, National Ocean Service, Center for
Operational Oceanographic Products and Services 2013,
2014; U.S. Census Bureau 2013; Wiest et al. 2016; M. D.
Correll, University of Maine, unpublished data). We used
ArcGIS 9.3 for all geospatial calculations unless stated
otherwise (Environmental Systems Research Institute,
Redlands, CA, USA; see Supplemental Material A for the

methods used to define patch features and for a summary of
associated results).

Bayesian Network Models to Estimate Species Density
We developed BN models that related design-based density
estimates with patch characteristics to project these estimates
to unsurveyed patches and ultimately generate regional
population estimates. For each species, we developed a series
of 7 models with different sets of covariates, from which we
selected the best-performing model. We used the BN
modeling shell Netica 5.16 (Norsys Software Corp.,

Table 2. Tidal-marsh patch covariates, grouped by geographic context, and covariate bin categories developed to predict the density of tidal-marsh specialist
birds in the Northeast United States in 2011–2012 using Bayesian network models. The X marks indicate covariates included in a particular model. Land use
and land cover covariates (i.e., natural, agriculture, developed, open water, and marsh) are proportions.

Modelb

Geographic
levela and
covariate Patch

500-m
subset 500m

1,000-m
subset 1,000m

Regional
subset Global Bin categoriesc

Patch
Area X X X X X X X 0–5, 5–50, 50–100, �100 ha
Perimeter X X X X X X X 137–700, 700–2,500, 2,500–15,000, �15,000m
High marsh X X X X X X X 0.0–0.01, 0.01–0.15, 0.15–0.50, 0.50–1.0

Local
Natural 150 X X X X X X 0.0–0.25, 0.25–0.50, 0.50–1.0
Agriculture
150

X X X X X X 0.0–0.01, 0.01–0.15, 0.15–0.53

Developed
150

X X X 0.0–0.10, 0.10–0.25, 0.25–0.99

Open water
150

X X X 0.0–0.10, 0.10–0.25, 0.25–0.92

Marsh 150 X X X X X X 0.0–0.05, 0.05–0.10, 0.10–0.47
Road density X X X X X X 0.0–20.0, 20.0–50.0, 50.0–230.0m/ha

Landscape
Natural 1,000 X X 0.0–0.25, 0.25–0.50, 0.50–1.0
Agriculture
1,000

X X X X 0.0–0.01, 0.01–0.15, 0.15–0.61

Developed
1,000

X X X X 0.0–0.10, 0.10–0.25, 0.25–0.91

Open water
1,000

X X 0.0–0.10, 0.10–0.25, 0.25–0.93

Marsh 1,000 X X X X 0.0–0.05, 0.05–0.10, 0.10–0.59
Sea-level
trend

X X X X 1.70–2.0, 2.0–2.63, 2.63–5.48mm/year

Regional
State X DE, CT, MA, MD, ME, NH, NJ, NY, RI, VA
Subregion X Coastal Maine, Cape Cod to Casco Bay,

Southern New England, Long Island, Coastal New Jersey,
Delaware Bay, Coastal Delmarva, Eastern Chesapeake Bay

Longitude X X �77.380 to �73.965, �73.965 to �71.855, �71.855 to
�66.800

Latitude X X 36.400 to 40.490, 40.490 to 41.400, 41.400 to 45.100
Primary
geomorphic
setting

X X Back-barrier lagoon marsh, Estuarine brackish marsh,
Estuarine embayment, Open coast, Tidal fresh marsh

Secondary
geomorphic
setting

X X Back-barrier lagoon marsh, Estuarine brackish marsh,
Estuarine embayment, None

Tertiary
geomorphic
setting

X X Tidal fresh marsh, None

a Covariates were grouped into 4 geographic scales: patch, local, landscape, and regional, to develop our Bayesian network models. Patch-level covariates
described the individual marsh patches, local-level covariates described conditions up to 500m away, landscape-level covariates described conditions up to
1,000m away, and regional-level covariates described location and geomorphic conditions relative to the entire Northeast United States.

b Model names were derived from the approximate scale of covariates contained within each model.
c Bin categories do not overlap. Continuous covariates are discretized into bins that approximately capture an even distribution of the covariate’s values.

Wiest et al. � Tidal-Marsh Bird Densities 113



Vancouver, British Columbia, Canada) and followedMarcot
et al. (2006) for model development and analysis.
Model development.—We constructed and selected from

BN models representing various combinations of covariates.
We grouped the covariates at 4 geographic scales: patch,
local, landscape, and regional (Table 2). Three patch-level
covariates described the individual marsh patches, 6 local-
level covariates described conditions within 500m, 6
landscape-level covariates described conditions within
1,000m, and 7 regional-level covariates described location
and geomorphic conditions relative to the entire Northeast
(Table 2). We constructed models of increasing complexity
by incorporating covariates from each geographic scale in
succession starting with the patch scale (the smallest scale).
We developed 1 patch-scale model (patch), 2 local-scale
models (500m subset and 500m), 2 landscape-scale models
(1,000m subset and 1,000m), and 2 regional-scale models
(regional subset and global); the subset models differed from
their counterparts in that not all covariates were included in
the subset models (Table 2). Because avian response to marsh
isolation and development can vary by species, within species,
and by geographic region, we chose to develop a series of
models that incorporated covariates that increasingly
described different levels and aspects of the surrounding
landscape (Shriver et al. 2004). To facilitate model
development for the subset models at the local, landscape,
and regional scales, we assessed the covariate relationships
within each of these geographic groups using Pearson
correlation coefficients. When the relationship was |r|� 0.4
for 2 covariates in the same geographic group, we used our
previous knowledge of tidal-marsh birds (Shriver et al. 2004)
to decide which covariate to prioritize and keep in the subset
models.
Covariates were represented as nodes in the BN structure.

We discretized each continuous predictor variable (i.e., the
patch features) into 3 or 4 state ranges (bins; Table 2), and
the target variable, bird species density, into 3 states (0–
<10�5 birds/ha, 10�5–<1 birds/ha, and �1 bird/ha). We
used a tree-augmented na€ıve (TAN) algorithm to build the
BNs from the existing case file data set (Friedman et al. 1997)
describing the sample of surveyed marsh patches with density
estimates from design-based models (Wiest et al. 2016).
Following TAN, we built the simplest network linking
covariates to outcomes for the most parsimonious explana-
tory structure and linked correlated variables so as not to
assume their independence. We fitted conditional probabil-
ity values for each covariate using the expectation
maximization (EM) algorithm (McLachlan and Krishnan
1996, Dempster et al. 1977; see Supplemental Material B for
examples of developed models).
Model evaluation.—To ensure independence between

data used for model building and model testing, we used 5-
fold cross-validation to evaluate the predictive accuracy of
our models (Boyce et al. 2002). We evaluated each model
series by comparing model complexity and classification
performance metrics. We defined and quantified model
complexity based on the number of covariates and
probabilities (unconditional priors and conditional proba-

bilities) in each model. We used these 2 metrics because
complexity metrics are not necessarily correlated and
multiple metrics can provide a more holistic assessment of
model structure and parsimony than a single metric alone
(Marcot 2012). We assessed model classification perfor-
mance by comparing the most likely species densities
produced by our models to our data using spherical payoff
and confusion error rates (Marcot 2012). Spherical payoff
is calculated from state probabilities and is a continuous
measure of the predictive accuracy of the model ranging
from 0–1, with 1 indicating perfect model performance and
lower values denoting greater uncertainty (error rates) of
model predictions (Hand 1997, Marcot 2012). We
considered models with spherical payoff >0.70 as having
good model performance. Confusion error rates are the
percentage of cases for which a model classifies the state
incorrectly, where classification is defined as the dominant
probability outcome; in this way, confusion error is a
measure of discrete outcomes, whereas spherical payoff
accounts for continuous probability values. We calculated
confusion error rates from confusion matrices for false
positives (Type I error), false negatives (Type II error), and
their sum, to assess model calibration performance and
model validity (Kohavi and Provost 1998, Marcot 2012).
Because of the novel application of our BN approach,

rules for model selection are not clearly defined, so we
developed selection rules that emphasized high prediction
performance as measured by spherical payoff and mean
confusion error for the greatest density state (�1 bird/ha;
�1 error rate). Because we tested the models against the
same data used to build them, the confusion error rates for
calibration performance provided a test of fit, and the
mean confusion error rates for cross-validation evaluated
true prediction accuracy (Marcot 2012). We prioritized
low error for the greatest density state to minimize the
number of false positives. We made this decision on the
premise that conservation actions will be more costly and
species recovery may take longer when a species is
predicted to occur in greater density than it actually
does. Species recovery may also take more time when false
negatives are not minimized; however, conservation would
not occur at the expense of risking extinction as could be
the case if false positives are not addressed.
Our steps for model selection were as follows: first, we

selected the models that had the highest spherical payoff
and lowest �1 error rate. If the model with the highest
spherical payoff did not have the lowest �1 error rate, but
the rate was within 5% of the lowest �1 error rate in the
species’ model series, we selected that model. If the
model’s �1 error rate was >5% higher than the lowest �1
error rate in the species’ model series, we disregarded the
model with the highest spherical payoff and evaluated the
model with the second highest spherical payoff. If the
next model had the lowest �1 error rate, or the rate was
within 5% of the lowest �1 error rate in the species’
model series, we selected that model. We used the final
selected models to project species density in unsurveyed
marsh patches.
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Species abundance projections.—We used the expected
species density values estimated by the BNs to calculate
species abundance in each unsurveyed patch that occurred
within a species’ regular breeding range (Wiest et al. 2016).
We calculated the expected density values by multiplying the
probability of each density state by the mid-point value of
that density state, and summing over all states. When the
final state is open-ended, its mid-point is calculated based on
the spread of values of the previous state, which is the
calculation built into the BN modeling program (Netica).
For example, in the 3-state bird density models, the density
ranges in each state are 0 to <10�5, 10�5 to <1, and �1.
Because the third state is open-ended, we used the mid-point
based on the previous state whose mid-point was
0.5� (1� 10�5), or approximately 0.5, so the mid-point
of the third state is 1þ 0.5, or 1.5. We acknowledge that this
could bias low the expected value calculations, but this bias
was held constant across all bird species and patches. We
then multiplied the expected density of each species by patch
area to project species abundance within each unsurveyed
marsh patch during the breeding season; see Supplemental
Material C for patch geospatial data, including patch
covariate values and final species density and abundance
estimates (geospatial data can also be downloaded from
www.tidalmarshbirds.org).
Sensitivity analyses.—We conducted sensitivity analyses of

the best-performing models to determine the relative
influence of each patch covariate on species density (Marcot
et al. 2006, Marcot 2012). We set input covariates to their
default prior probability distributions based on frequencies of
values derived from the case files, and set realistic upper
bounds on the real value of species density using the
maximum densities estimated in our baseline assessment
(rounded up to the nearest whole number; Wiest et al. 2016).
We calculated sensitivity by calculating variance reduction
for continuous variables and entropy reduction (mutual
information) for categorical variables (Marcot 2012). We
evaluated the rank-order of the covariates to compare
covariate influence: the greater the reduction value, the more
likely it was that a particular covariate node changed the
posterior probability values of a given species density node.
Regional population estimates.—We estimated region-wide

population sizes for each species by combining the
abundance values calculated from the best-performing
BNs for unsurveyed patches with those calculated from
the R package unmarked during our baseline survey for
surveyed patches (Wiest et al. 2016). We used the function
total.est in the spsurvey package in Program R (Kincaid and
Olsen 2012) to estimate population totals with 95%
confidence intervals. We used the Horvitz–Thompson
estimator for a single-stage sample to calculate population
totals and used a normal distribution multiplier to calculate
the confidence intervals (Horvitz and Thompson 1952,
Diaz-Ramos et al. 1996, Kincaid et al. 2015). We used the
species abundance value for each patch as the response value
(i.e., the abundance projections for the unsurveyed patches
and the design-based abundance estimates for the surveyed
patches; Wiest et al. 2016), and weighted patches equally

(weight¼ 1). We report population sizes and confidence
bounds to the nearest 1,000 or 100 depending on the
magnitude of the estimates.

RESULTS

The BN models varied in their complexity; the number of
covariates ranged from 3 to 22 and the number of
probabilities ranged from 111 to 1,815 (Table 3). Model
classification performance also varied, but all models had
spherical payoff values >0.70 (Table 3). Total confusion
error rates ranged from 11% to 40% for calibration
performance and from 23% to 43% for model validation
(Table 3). In general, model prediction accuracy improved
with increasing model complexity.
On average, models most accurately predicted when a patch

supported no birds (clapper rail, willet, and Nelson’s and
seaside sparrow models) and least accurately predicted when
a patch supported �1 bird/ha (clapper rail, willet, and
Nelson’s and saltmarsh sparrow models; Table 3). The
exception to this being that saltmarsh sparrow models
performed best when predicting 10�5–<1 birds/ha, whereas
seaside sparrow models were least effective at predicting this
density category (Table 3). Overall there was more variation
(greater spread) in the error rates for the �1 and 10�5–<1
density states than for the 0–<10�5 density state.
The global model for clapper rail and willet met our first

rule for model selection; these models had the highest
spherical payoff values (0.90 and 0.87, respectively) and
lowest model validation confusion error rates for �1 bird/ha
(45% and 77%, respectively) in their model series (Table 3).
We choose the global model for saltmarsh sparrow using our
second rule, which had the highest spherical payoff, 0.90, and
a �1 error rate (94%) within 5% of the lowest reported rate
(92%; Table 3). No model for Nelson’s sparrow or seaside
sparrow met our first 2 selection steps, so we evaluated each
model series using our third step. The models with the
second highest spherical payoff values both had �1 error
rates within 5% of the lowest rate and so were selected for the
2 species. Nelson’s sparrow’s global model had 79% error
(76% was the lowest �1 error rate in the series) and seaside
sparrow’s regional subset model had 47% error (this was the
lowest�1 error rate in the series) for the�1 density category
(Table 3). Although high confusion error for the �1 density
category was a large source of the total error, total error rates
from the 5-fold cross-validation were all <30% for the final
selected models (Table 3). The 5 selected models were overall
more accurate but also more complex than the other models
considered (see Supplemental Material B for figures of the
final selected models).
Our species density predictions varied in sensitivity to the

different input variables (Table 4). Clapper rail density was
most sensitive to the state and subregion categories, followed
by the proportion of human development within 1,000m,
total patch area, and latitude. Uncertainty associated with
willet density was most sensitive to the subregion and then
state categories, followed by the dominant geomorphic
setting of a patch, density of roads, and the proportion of
marsh within 1,000m. Nelson’s sparrow density was most
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influenced by the 2 covariates measuring patch dimension,
area and perimeter, followed by the dominant geomorphic
setting of a patch, changes in mean sea level, and the
proportion of open water within 1,000m. Saltmarsh sparrow
density was most sensitive to the subregion and state
categories, followed by changes in mean sea level, the
dominant geomorphic setting of a patch, and the proportion
of marsh within 150m. Seaside sparrow density was most
influenced by latitude and longitude, followed by total patch
area, the proportion of human development within 1,000m,
and the density of roads.
We determined that, of the specialist species, Nelson’s

sparrow had the smallest estimated population size in the
region, whereas seaside sparrow had the largest (Table 5).
Population size estimates and 95% confidence intervals

were similar for clapper rail and willet (Table 5). Our
regional population estimate for saltmarsh sparrow also
represents the global population estimate for this species
(Table 5).

DISCUSSION

Our model-based approach provides spatially explicit density
estimates for tidal-marsh birds of high conservation concern
across marsh patches in the Northeast. The flexibility of the
BN model estimates is such that estimates can be scaled to
any geographic level of conservation interest, where patch-
specific extrapolation was not possible with the design-based
estimates (Wiest et al. 2016). Our patch-level estimates
allow for the identification and targeting of areas for
conservation, and because our BNs integrated geospatial

Table 3. Model complexity, calibration performance, and validation values of Bayesian network models used to predict tidal-marsh bird density (birds/ha) in
the Northeast United States, 2011–2012, as a function of patch covariates. The best-scoring value(s) for each species are indicated by an asterisk.

Model complexity
Model calibration performance,

confusion error rates, %
Model validation (5-fold), mean confusion

error rates, mean %

Species and
modela,b

Spherical
payoff

Number of
covariates

Number of
probabilities

0–<10�5

birds/ha
10�5–<1
birds/ha

�1
bird/ha Total

0–<10�5

birds/ha
10�5–<1
birds/ha

�1
bird/ha Total

Clapper rail
Patch 0.82 3 111 9� 41 85 24 15 38 100 29
500-m sub 0.86 7 237 10 21 55 17 15 32� 72 26
500 m 0.87 9 291 10 25 50 17 16 38 92 28
1,000-m sub 0.88 11 336 9� 24 25 15 15 39 65 26
1,000 m 0.90� 15 444 9� 23 15� 16 11� 41 63 25�

Regional sub 0.89 16 498 9� 25 15� 14 14 37 65 25�

Globalb 0.90� 22 1,248 9� 20� 15� 13� 17 45 45� 28
Willet
Patch 0.81 3 111 5� 55 98 23 8� 56� 100 25�

500-m sub 0.83 7 237 6 48 73 20 8� 57 90 25�

500 m 0.83 9 291 9 53 62 22 9 58 91 25�

1,000-m sub 0.84 11 345 9 49 64 22 12 63 86 28
1,000 m 0.84 15 453 12 41 44� 20 12 61 83 28
Regional sub 0.83 16 507 12 43 51 21 15 57 80 29
Globalb 0.87� 22 1,734 7 33� 58 16� 12 56� 77� 27

Nelson’s sparrow
Patch 0.82 3 111 6 56 83 24 10 65� 93 30
500-m sub 0.87 7 255 7 41 48 18 14 70 85 33
500 m 0.87 9 300 7 29 44 16 13 67 76� 31
1,000-m sub 0.89 11 354 5� 27 35 12 12 75 84 32
1,000 m 0.91� 15 471 5� 18� 35 11� 9 66 88 29
Regional sub 0.90 16 414 5� 21 35 11� 10 74 84 30
Globalb 0.90 22 531 5� 24 30� 11� 8� 70 79 28�

Saltmarsh sparrow
Patch 0.71 3 111 57 18 100 40 60 21 100 43
500-m sub 0.75 7 246 37 23 82 33 49 30 95 42
500 m 0.76 9 300 37 24 78 33 45 34 100 42
1,000-m sub 0.82 11 345 20 21 59 23 29 28 92� 32
1,000 m 0.83 15 453 19 22 55 22 29 27 92� 31
Regional sub 0.83 16 492 20 21 48 22 25 28 97 30
Globalb 0.90� 22 1,815 13� 12� 22� 13� 20� 19� 94 23�

Seaside sparrow
Patch 0.77 3 111 8 85 58 30 10� 86 80 34
500-m sub 0.81 7 246 14 60 29 26 15 70 51 31
500 m 0.81 9 291 12 62 29 25 14 69 53 31
1,000-m sub 0.83 11 345 11 55 19 22 15 69 53 31
1,000 m 0.84 15 444 11 50 13� 21 16 61 59 32
Regional subb 0.86 16 528 10 35 19 17 16 56 47� 28
Global 0.90� 22 1,365 6� 26� 13� 12� 10� 46� 63 23�

a Number of cases in each species data set used to parameterize the models: clapper rail¼ 255, willet¼ 582, Nelson’s sparrow¼ 193, saltmarsh sparrow¼ 509,
and seaside sparrow¼ 390. The subset models (sub) differed from their counterparts in that not all covariates were included in the subset models.

b The final selected model for each species.
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habitat data and other covariates that influence variation in
bird density, the estimates provide insight to the factors that
influence density for these species and better account for
underlying uncertainty than our design-based estimates from
our initial baseline assessment (Wiest et al. 2016). We
developed our BNmodels using publicly accessible geospatial
databases as economical and presumably reliable sources of
data, and so patch covariates and density estimates can be
readily updated and recalculated in the models when
geospatial data are improved and updated by external
sources.
The density of each bird in each patch was calculated from

the expected value across all density range states, weighted by
the associated probability of each state, and then summed
across all states. This inherently accounts for the probability
distributions across the density states and is not simply a
mid-point. However, this approach also provides an estimate
of the standard deviation of density values across all states,

assuming a Gaussian distribution, which is essentially a
measure of uncertainty of the expected value. We did not
carry these patch-specific measures of standard deviation into
the measures of bird density across patches at the regional
scale, and we recognize that they add uncertainty to the
overall signal. That is, the region-wide bird density estimates
should be interpreted not as precise point values but as
embedded in a range of potential values.
We developed the BNs at the regional scale instead of

smaller subregion or state scales, and thus had a large training
data set with which to build the model probability structures,
which contributed to more robust cross-validation analyses.
Although there is no specific guideline for number of cases
from which to induce BN model structures and parameters,
BN models become more robust when the cases cover as
many combinations of covariate conditions as possible, as was
the condition of our data sets, so that any missing
combinations pertain mainly to non sequitur or irrelevant
conditions. Our training data set contained fewer records for
the �1 bird/ha state compared to the other categories, and
including additional cases where individuals are present at
greater densities should improve model accuracy. Model
performance patterns suggested that the magnitude of effect
from selecting the wrong model would be greater if
precedence was not given to minimizing �1 error.
Results of the sensitivity analyses indicated that, for these

specialist tidal-marsh species, the bird species density

Table 4. Sensitivity of findings for the best-performing Bayesian network models predicting tidal-marsh bird density in the Northeast United States, 2011–
2012, as a function of patch covariates. The 5 highest-scoring covariates for each species are indicated with an asterisk; NA implies not applicable because a given
variable was not included in the final model.

Variance reduction

Geographic levela and covariate Clapper rail Willet Nelson’s sparrow Saltmarsh sparrow Seaside sparrow

Patch
Area 0.0715� 0.0327 0.1158� 0.0103 0.0934�

Perimeter 0.0433 0.0251 0.0976� 0.0125 0.0579
High marsh 0.0432 0.0154 0.0037 0.0091 0.0265

Local
Natural 150 0.0025 0.0036 0.0021 0.0033 0.0015
Agriculture 150 0.0020 0.0059 0.0014 0.0011 0.0318
Developed 150 0.0570 0.0198 0.0102 0.0053 NA
Open water 150 0.0395 0.0247 0.0062 0.0036 NA
Marsh 150 0.0199 0.0318 0.0132 0.0223� 0.0245
Road density 0.0405 0.0417� 0.0151 0.0087 0.0664�

Landscape
Natural 1,000 0.0010 0.0154 0.0191 0.0028 NA
Agriculture 1,000 0.0018 0.0181 0.0001 0.0031 0.0267
Developed 1,000 0.0764� 0.0162 0.0138 0.0057 0.0800�

Open water 1,000 0.0193 0.0329 0.0341� 0.0169 NA
Marsh 1,000 0.0244 0.0373� 0.0144 0.0031 0.0042
Sea-level trend 0.0529 0.0240 0.0410� 0.0400� 0.0327

Regional
State 0.1487� 0.0576� 0.0131 0.0751� NA
Subregion 0.1051� 0.0745� 0.0173 0.0769� NA
Longitude 0.0528 0.0279 0.0000 0.0193 0.0988�

Latitude 0.0603� 0.0319 0.0000 0.0194 0.1086�

Primary geomorphic setting 0.0072 0.0451� 0.0606� 0.0353� 0.0061
Secondary geomorphic setting 0.0029 0.0028 0.0000 0.0019 0.0662
Tertiary geomorphic setting 0.0004 0.0002 0.0000 0.0132 0.0180

a Covariates were grouped into 4 geographic scales: patch, local, landscape, and regional, to develop our Bayesian network models. Patch-level covariates
described the individual marsh patches, local-level covariates described conditions up to 500m away, landscape-level covariates described conditions up to
1,000m away, and regional-level covariates described location and geomorphic conditions relative to the entire Northeast United States.

Table 5. Population estimates of tidal-marsh birds during the breeding
season, 2011–2012, in the Northeast United States (Maine to Virginia).

Species Abundance (95% CI)

Clapper rail 110,000 (61,000–159,000)
Willet 111,000 (70,000–152,000)
Nelson’s sparrow 7,000 (4,000–10,000)
Saltmarsh sparrow 60,000 (40,000–80,000)
Seaside sparrow 234,000 (112,000–356,000)
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response variables were most sensitive to local-scale variables
of patch area and perimeter, the proportion of human
development within 1,000m, road density, and changes in
mean sea level, and regional-scale variables including state,
subregion, latitude and longitude, and primary geomorphic
setting because they denoted large-scale geographic variation
in abundance. Landscape context influences the factors that
affect tidal-marsh birds in the Northeast (Shriver et al. 2004)
and our results support the notion that regional management
prescriptions will likely be most effective for this suite of
species. For example, patch area was an important predictor
of the densities of several of our specialist species in terms of
density being affected by changes in patch size. The range of
patch sizes, however, varies across our subregions such that
what constitutes a large patch in one subregion may differ
from another subregion; this explains why bird species
density was sensitive to patch size and subregion. Generally,
larger patches with less human development and smaller
variation in mean sea level tend to be best for these specialist
species. Patch-level density estimates can be used to set
conservation targets within states, subregions, and across the
Northeast by providing the ability to determine which
combination of patches support the greatest number of birds
for each species. Indeed, sensitivity results can be used to
prioritize future monitoring and research efforts (Pollino and
Hart 2008, Ayre and Landis 2012).
Incorporating better data into existing BNs is a major

strength of this analytical tool (Ayre and Landis 2012) and if
we update our BNs with more precise geospatial data in the
future, we may reduce the overall uncertainty in our model
results. Integrating more detailed and locally derived sea-
level rise estimates for each patch would be especially
beneficial given the effects that sea-level rise has on the
timing of semidiurnal high tide events during the breeding
season. Specifically, future changes in saltmarsh sparrow
reproduction resulting from shifts in the magnitude of
semidiurnal high tide events could cause extinction for this
species as soon as 2035 (Field et al. 2017).
Our baseline mapping can provide conservation organiza-

tions with a way to identify initial marshes for conservation
across a broad geographic area, and can be revisited and
updated as more detailed geospatial data become available
(e.g., remote sensing of saltmarsh vegetation zones). The
Atlantic Coast Joint Venture has begun using our patch-level
estimates to develop the Saltmarsh Sparrow Habitat
Prioritization Tool, which scores and prioritizes the marsh
patches needed to sustain this species in its breeding range
(the Northeast). The tool can be used to help make land
protection decisions and guide habitat management actions
(tool available at http://acjv.org/saltmarsh-sparrow-2/).
The ability of land managers and conservation practitioners

to continue species monitoring is critical to evaluating the
efficacy of tidal-marsh habitat management decisions.
Management tools are most useful when they are adaptive,
incorporating species’ responses to habitat changes and
applying this information to counteract species’ population
declines. There are substantial challenges in developing these
tools (and adapting them) because they need to be founded in

science-based decision-making and incorporate climate
change uncertainties at the same time (Conroy et al.
2010), but long-term monitoring will provide some
guarantee that conservation efforts are targeting the most
valuable habitat patches for bird populations. Incorporating
data on land costs and availability, and on long-term viability
of marshes also could be beneficial to future conservation
planning (Wiest et al. 2014). Our ability to accurately
identify marshes that are essential to sustaining tidal-marsh
bird populations and maintain these areas as viable habitats
will likely determine the future persistence of these species.

MANAGEMENT IMPLICATIONS

Our BN models provide a flexible framework built on
baseline monitoring and spatial data that can be modified
into an adaptive management tool and used to guide
management decisions in response to avian species’
interactions with tidal-marsh habitat. Managers interested
in maintaining tidal marshes for marsh birds and other
wildlife could concentrate on conserving patches with lower
rates of sea-level rise and minimizing impacts from
development. Habitat management actions that help
maintain marsh habitat and increase reproduction of
specialist birds that nest on and near the marsh surface
can be incorporated into our models as decision variable
information. The information can be used to evaluate the
success of implemented actions and help make future
management decisions that are based on empirical data.
Updating our models with new data from bird monitoring,
remote sensing, and sea-level rise and climate models also
will improve the utility of such a tool to aid in managing this
changing landscape.
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