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Risk Analysis Frameworks Used in Biological Control and
Introduction of a Novel Bayesian Network Tool

Nicolas Meurisse ,1,2,∗ Bruce G. Marcot ,3 Owen Woodberry,4 Barbara I. P. Barratt ,5,2

and Jacqui H. Todd 6,2

Classical biological control, the introduction of natural enemies to new environments to con-
trol unwanted pests or weeds, is, despite numerous successful examples, associated with ris-
ing concerns about unwanted environmental impacts such as population decline of nontarget
species. Recognition of these biosafety risks is globally increasing, and prerelease assessments
of biological control agents (BCAs) have become more rigorous in many countries. We re-
view the current approaches to risk assessment for BCAs as used in Australasia, Europe,
and North America. Traditionally, these assessments focus on providing assurance about the
specificity of a proposed BCA, generally via a list of suitable versus nonsuitable hosts deter-
mined through laboratory specificity tests (i.e., by determining the BCA’s physiological host
range). The outcome of interactions of proposed agents in the natural environment can dif-
fer from laboratory-based predictions. Potential nontarget host testing may be incomplete,
additional ecological barriers under field conditions may limit encounters between BCA and
nontargets or reduce attack levels, and BCAs could disperse to habitats beyond those used
by the target species and adversely affect nontarget species. We advocate for the adoption
of more comprehensive, ecologically-based, probabilistic risk assessment approaches to BCA
introductions. An example is provided using a Bayesian network that can integrate infor-
mation on probabilities and uncertainties of a BCA to spread and establish in new habitats,
interact with nontarget species in these habitats, and eventually negatively impact the pop-
ulations of these nontarget species. Our new model, Biocontrol Adverse Impact Probability
Assessment, aims to be incorporated into a structured decision-making framework to support
national regulatory authorities.
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1. INTRODUCTION

Considerations of ecological risks have arisen as
animportant public concern in response to increasing
threats to ecosystems arising from climate change,
environmental degradation, and invasive species in-
troductions (Hope, 2006; International Plant Pro-
tection Convention, 2014; McDaniels, Axelrod, &
Slovic, 1995; McGeoch et al., 2010). Ecological
risk assessments seek to provide science-based evi-
dence to inform on the actual risk associated with
environmental threats (i.e., the likelihood of an ad-
verse event and the magnitude of the consequences)
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and, hence, support risk managers to mitigate those
risks. Threats posed by the introduction, intentionally
or unintentionally, of exotic organisms in new envi-
ronments are particularly concerning. New introduc-
tions can affect the functioning of both natural and
productive ecosystems, animal and human health,
and more generally our environment, economies,
and ways of living (Simberloff et al., 2013). For in-
stance, a study of invasive organisms in the United
States showed that introduced plants, animals, and
microbes are, as a group, potentially causing harm
to about 42% of the species listed as threatened or
endangered in the United States (; Pimentel, Zu-
niga, & Morrison, 2005; Wilcove, Rothstein, Dubow,
Phillips, & Losos, 1998). The economic impact asso-
ciated with these intentional or unintentional intro-
ductions amounts to more than US$150 billion an-
nually (Pimentel et al., 2005; inflation corrected for
2020).

Biological control in its classical form refers to
the importation of natural enemies, generally in-
sects, from other countries or continents to con-
trol unwanted pests or weeds. Such importations are
performed with the goal of their permanent estab-
lishment, dispersal, and effective control of the tar-
get species (TS) in the new range (Eilenberg, Ha-
jek, & Lomer, 2001; Waage & Mills, 1992). Bio-
logical control programs present a valuable alterna-
tive to the use of synthetic chemical herbicides and
pesticides arguably because of their low economic
cost/benefit ratio (Heimpel & Cock, 2018; Thomas &
Willis, 1998). Nonetheless, concerns about the envi-
ronmental safety of biocontrol using insects as natu-
ral enemies emerged in the 1980s when observations
indicated that negative impacts had resulted from
some past introductions (Hajek et al. 2016; Heim-
pel, & Cock, 2018; Howarth, 1983; Simberloff & Stil-
ing, 1996). Historical examples of negative impacts
include the release of the Asian ladybird, Harmo-
nia axyridis, in Europe and North America (Roy &
Wajnberg, 2008) and of the generalist parasitoid fly,
Compsilura concinnata, in North America (Boettner,
Elkinton, & Boettner, 2000). Both species proved ef-
ficient natural enemies in the areas of introduction
but also led to damage to nontarget native species’
populations. More recently, the braconid parasitoid,
Microctonus aethiopoides, has been shown to attack
nontarget native weevils in New Zealand (including
in habitats where the TS, Sitona discoideus, was not
present; Ferguson, Kean, Barton, & Barratt, 2016). In
the context of increasing recognition of biodiversity

decline, in part related to new and invasive species in-
troductions, assessments for proposed biological con-
trol agents (BCAs) have now become more rigorous
and risk-averse, focusing on the assurance that the
proposed BCA will not attack any species other than
the target (i.e., strict host specificity).

The process of species selection for host range
testing is always a critical component in risk as-
sessment. It has progressively evolved from the tra-
ditional “phylogenetic, centrifugal” approach origi-
nally developed for weeds (Wapshere, 1974), where
nontarget species (NTS) more closely related to the
TS are tested in priority, to a more holistic approach
considering both taxonomic and ecological similari-
ties between species (Barratt et al., 1997; Hajek et al.
2016; van Lenteren et al. 2003). Nevertheless, assur-
ance about the specificity of a proposed BCA is typ-
ically inferred from the examination of its physiolog-
ical host range which, of necessity, is undertaken in
the laboratory with little evaluation generally pos-
sible to determine its ecological host range prior to
its release (Barratt et al., 1997; Hajek et al., 2016;
van Lenteren, Bale, Bigler, Hokkanen, & Loomans,
2006; Withers & Browne, 2004). Many generalist her-
bivores or predators are governed less by taxonomic
affinities than by ecological or habitat factors (Shee-
han, 1986). This is also true for some parasitoids, such
as those that specialize in leafminers but that can
attack a range of leafminer hosts in different taxo-
nomic orders (Askew, 1994). In this article, we re-
view the main approaches that are currently used for
the risk assessment of BCAs. While most proposed
BCAs are selected for detailed research on the ba-
sis of a narrow host specificity, there are times when
the selection of generalist BCAs able to exploit var-
ious host or prey species, which thrive in a wide va-
riety of environmental conditions, may be appropri-
ate. Therefore, we do not limit our discussion to spe-
cialists alone. We advocate for the adoption of more
comprehensive, ecologically-based, probabilistic risk
assessment methods, and provide a new tool based
on a Bayesian network (BN) model. A retrospec-
tive case study demonstrates the use of the model
for predictions of the behavior of a BCA in an ac-
tual ecological setting and to predict its potential im-
pact on an NTS. The tool enables identification of
the key driving influences on the overall impact of
the BCA on the NTS, and in this case, shows how
the outcome of interactions predicted for the nat-
ural environment can differ from laboratory-based
predictions.
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2. REVIEW OF CURRENT ASSESSMENT
FRAMEWORKS

2.1. General Assessment Procedures

The purpose of a risk assessment is to inform
on the potential hazards and their probabilities and
severities associated with decisions not to make the
decision per se. In general, biocontrol risk assess-
ments focus on postrelease impacts on NTS and have
the following components (Barratt & Ehlers, 2017;
Barratt, Howarth, Withers, Kean, & Ridley, 2010):
prediction of release outcomes based on available in-
formation; clear depiction of the types, sources, and
implications of strengths of evidence and uncertain-
ties on predicted outcomes; use of all available in-
formation including research data, technical expert
knowledge, and input from stakeholders, including
the public; transparent and reproducible assessment
procedures; and evaluation of all possible outcomes
including those with a low chance of occurrence.

Thomas and Willis (1998) noted that current tests
of the degree to which BCAs are specific to their
intended TS tend to be highly conservative and are
based mostly, or solely, on a physiological match of
the agent to the target and some NTS of economic
and agricultural importance as determined from lab-
oratory experiments. They recommended increasing
the consideration of ecological constraints on the
host range of a BCA and the use of empirical data
coupled to a risk assessment framework to better
estimate potential in situ ecological impacts of the
agent on NTS. Babendreier, Bigler, and Kuhlmann
(2005) suggested using a suite of ecological factors
beyond just host specificity for considering poten-
tial BCA impacts. These include factors contributing
to the temporal and spatial matching of hosts and
BCAs, notably dispersal, successful overwintering
and establishment, and an evaluation of indirect in-
teractions such as competition. Some of this informa-
tion can be obtained from previous postrelease stud-
ies of the considered BCA conducted elsewhere or
from observations on related species. Hopper (2001),
De Clercq, Mason, and Babendreier (2011), Barratt,
Howarth, Withers, Kean, and Ridley (2010), Barratt
and Ehlers (2017), Hajek et al. (2016), and Heim-
pel and Cock (2018) noted the value of risk assess-
ments, particularly postrelease monitoring and val-
idation of predicted impacts, to reduce uncertainty
in subsequent assessments and use of risk-benefit as-
sessments to help guide BCA release decisions. To
our knowledge, only New Zealand and Australia in-

corporate a formal comparison between these risks
and benefits into their decision-making process (Bar-
ratt & Ehlers, 2017; Heimpel & Cock, 2018; Hinz,
Schwarzländer, Gassmann, & Bourchier, 2014; Hunt
et al., 2008).

For decisionmakers, all decisions in the real
world involve a degree of uncertainty because natu-
ral systems are inherently complex. Uncertainty may
be part of the environment in which the decision is
made and may relate to the analysis of outcomes
resulting from the actions or decisions themselves.
Uncertainty is a key element of both risk analysis
and risk management, and weighing the costs and
benefits of potential outcomes with their probabil-
ities is essential to inform and advise decisionmak-
ers. In the Australian and New Zealand Risk Man-
agement Guidelines, the definition of risk at a high
level has changed from “the chance of something
happening that will have an impact on objectives” to
“the effect of uncertainty on objectives” (Office of
the Prime Minister’s Chief Science Advisor, 2016).
The European Food Safety Authority (EFSA) de-
fines risk more tangibly as “the inability to determine
the true state of affairs of a system” (EFSA Scien-
tific Committee et al., 2018). The latter is appropriate
to biological systems where information is usually in-
complete and difficult to obtain for resource manage-
ment decisions (Marcot, 2021).

In the context of risk assessment for BCA ap-
plications under the New Zealand Hazardous Sub-
stances and New Organisms Act 1996, a preliminary
analysis of areas of uncertainty, as expressed by ap-
plicants, regulators, and members of the public dur-
ing the application and consultation process, was car-
ried out to inform future research priorities. Over 250
expressions of uncertainty were grouped into about
30 categories. Among the most frequently mentioned
areas of uncertainty were risk of adverse effects on
NTS and interpretation of host-range testing data,
followed by uncertainty about cultural risks (to val-
ues of indigenous peoples), and questions about the
existence of natural enemies already present in the
new geographical range of the target pest and hence
less risky alternatives (Barbara Barratt & Toni With-
ers, unpublished data).

To help address uncertainty, both semi-
quantitative and quantitative (probabilistic) tools
have been used in BCA risk assessment processes.
They can provide rapid reviews or calculated prob-
abilities of BCA and NTS interactions for either
classical biological control (i.e., the introduction
of an exotic natural enemy in a new area) or
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augmentative biological control (i.e., the release
of additional numbers of a natural enemy that is
already present).

2.2. Semi-quantitative Methods

2.2.1. Description

Semi-quantitative risk assessment methods gen-
erally use a system to rate, rank, and combine fac-
tors into an overall outcome score denoting the po-
tential efficacy or harm of a BCA. These methods
are widely used for the evaluation of risk associated
with invasive species and can be instructive in the
context of deliberate introductions used in biocon-
trol programs (Abram & Moffat, 2018). For example,
as used with invasive species assessment, Davidson,
Fusaro, Sturtevant, Rutherford, and Kashian (2017)
applied a risk rating to evaluate the potential of var-
ious anthropogenic vectors for introducing aquatic
nonindigenous species in Laurentian Great Lakes.
Holt et al. (2012) used graphical visualizations of
risk and uncertainty scores to evaluate the poten-
tial entry, establishment, spread, and impact of pest
species.

Semi-quantitative risk scoring has been used to
evaluate the potential impacts of BCAs on NTS (van
Lenteren & Loomans, 2006). For instance, based on
results from laboratory host range testing and lit-
erature review, Paynter et al. (2015) obtained risk
scores for 22 herbivore control agents established in
New Zealand as ratios of their relative performance
for target weeds to nontarget plants. They found a
clear threshold above which the risk score strongly
indicated that nontarget hosts would be used in the
natural environment. Similarly, Paynter and Teulon
(2019) applied a similar scoring approach for four
Aphidius BCA species introduced in New Zealand,
based on ratios of percent parasitism for nontarget
aphid species to target aphid species. High levels of
parasitism of NTS in the field were correlated with
high risk scores above a certain threshold.

Another semi-quantitative scoring approach is
the priority ranking of nontarget invertebrates
(PRONTI) tool that is used to rank potential NTS
for further risk analysis with a proposed BCA (Todd,
Barratt, Tooman, Beggs, & Malone, 2015). PRONTI
ranks NTS using scores obtained for five criteria: haz-
ards posed by the BCA (direct and indirect), the like-
lihood of hazard exposure, ecological impacts of the
exposure, species’ anthropocentric value, and the de-
gree to which the NTS is testable (Todd et al., 2015).

2.2.2. Advantages and Drawbacks

The primary advantage of semi-quantitative
methods is their ability to combine a wide range
of qualitative indices into one or several summary
scores that can be used for risk ranking. The pro-
cess is straightforward and repeatable; hence it can
be used to support transparent decision making. The
possibility to trace back the output to intermediate or
initial underlying risk estimates provides end-users
with the ability to explain unexpected values in the
rankings. An example is the pest risk assessment risk
score and uncertainty visualizer developed by the
European and Mediterranean Plant Protection Or-
ganization (EPPO) (Holt et al., 2012) that provides a
one-page graphical summary of about 50 risk scores
associated with the entry, establishment, spread, and
impact of invasive species. All scores are displayed
with a measure of associated uncertainty as estimated
by assessors during the risk assessment process. In
PRONTI, uncertainty associated with the ranking of
each NTS for testing is expressed as the percentage of
data that were unknown for each of the five risk cri-
teria and for the calculation of the overall risk score
(Todd et al., 2015).

Semi-quantitative models can be quickly
adapted to specific needs, provided that the reasons
for such updates are objective and well-documented.
For instance, additional risk components can be
considered or intermediate risk score weightings
adapted. The model can be constructed in a stepwise
procedure, allowing an initial ranking and shortlist-
ing based on criteria and indices that are considered
the most important (hence not all indices neces-
sarily need to be estimated for all tested species).
van Lenteren and Loomans (2006), described such
a stepwise risk assessment procedure for BCAs,
where the decision to advise a release is taken at
relevant steps in the process for both augmentative
and classical biological control.

The principal drawback of semi-quantitative
methods relates to the use of single-point numeri-
cal estimates to quantify individual risk components.
Point estimates do not provide a means of denot-
ing uncertainty around expected values, and when
the amount of uncertainty in each estimate is not
communicated with the results, this gives rise to a
false sense of precision throughout the entire process.
Other simplifying factors that may overstate preci-
sion and accuracy include the use of individual com-
ponent scores established on predetermined semi-
quantitative scales, their combinations into overall
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risk indices using formulae or matrices, and the incor-
poration of average score values when information is
not available. In addition to uncertainty, all numeri-
cal estimates can be subject to misunderstandings or
errors from the assessors (Marcot, 2021).

2.3. Quantitative (Probabilistic) Methods

2.3.1. Description

Quantitative risk assessment methods generally
use a probabilistic approach based on key input
variables such as ecological traits of the species
of interest and their environmental associations.
Wright, Hoffmann, Kuhar, Gardner, and Pitcher
(2005) demonstrated the use of precision (decision)
trees with an analysis of the impact of the egg par-
asitoid, Trichogramma ostriniae, on the European
corn borer, Ostrina nubilalis, in the United States.
Decision trees are a type of probabilistic decision
model that incorporates parameter variability as a
measure of uncertainty, and where the system is de-
scribed based on the relationships between key pa-
rameters, decision points, and potential outcomes
(Varis 1997). The “tree” allows an easy visualization
of the joint probabilities that each of a number of
contingencies will occur, and the “branches” in the
tree allow the paths to these outcomes to be identi-
fied.

The EPPO Standard PM6/4 “Decision-support
scheme for import and release of biological control
agents of plant pests” provides a decision-support
procedure for evaluating BCAs of plant pests based
on the probability of BCA establishment and spread
and assessment of potential environmental conse-
quences (EPPO, 2018). The results are similarly ex-
pressed as probabilities of outcomes, although the in-
put variables used in the assessment may derive in
part from expert knowledge elicitation and might be
qualitative or quantitative.

Besides probabilistic decision models, quantita-
tive simulations and analytic models also have been
developed to inform biocontrol decisions. For ex-
ample, Grevstad (1999) developed a stochastic sim-
ulation model of BCA establishment that provides
quantitative results to help inform decisions on BCA
introduction. Rees and Hill (2001) used analytic and
simulation models to assess the viability in New
Zealand of European gorse, Ulex europaeus, under
varying levels of seed survival-related factors as well
as other site disturbances.

Another approach gaining favor in evaluating
risk and management solutions for invasive species,
and introduction of BCAs, is the use of BN mod-
els (Holt et al., 2018; Jamieson et al., 2013, 2016;
Mengersen et al., 2012; Wright et al., 2005). BNs
can link physiological and ecological input variables
using conditional probabilities to calculate poste-
rior probabilities of specified outcome states, such
as degree of potential spread of and injury by inva-
sive species (Marcot, Hoff, Martin, Jewell, & Givens,
2019; Wyman-Grothem, Popoff, Hoff, & Herbst,
2018).

2.3.2. Advantages and Drawbacks

The main advantage of probabilistic risk as-
sessment methods is their capacity to quantify the
sources and implications of uncertainty. For ecolog-
ical systems, this is more meaningful than procedures
that rely on single-point estimates, which do not rep-
resent variability, including seasonal, habitat or ge-
netic variability, or assessment uncertainty, such as
occurs when experts are unsure or diverge in their
opinions. Kenis et al. (2012) presented a hierarchi-
cal scoring system to improve consistency among
experts’ opinions while performing assessments of
environmental impacts of alien plants, invertebrate
plant pests, and pathogens. The experts/assessors se-
lect their modal score for risk factors (low, medium,
or high, for most variables) but also assign them a
level of uncertainty (high, medium, or low, which au-
tomatically assigns the chosen modal score a proba-
bility of 60%, 74%, or 94%, respectively). The prob-
ability distribution of other scores is then determined
by a matrix system based on the probability distribu-
tion of the input scores. Probabilistic methods can be
used to investigate the worst case (high probability
of impact) and best case (low probability of impact)
scenarios and to identify the effectiveness of risk fac-
tors by use of sensitivity and influence analyses. Such
analyses can be used to justify a degree of precaution
in the interpretation of predictions and provide jus-
tification for further data collection to reduce major
uncertainties.

Probabilistic models such as this can be read-
ily tested, updated, and improved with new infor-
mation for any of the input variables. Kaufman and
Wright (2017) used decision trees to estimate over-
all probability distributions of parasitism for three
introduced parasitoids that attack an endemic Lep-
idoptera species in Hawaii, based on habitat over-
lap, seasonality, and observed direct impacts in other
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countries. These models could be adapted quickly
should new data become available, for instance, to
test new parasitoids (self-introduced or envisaged for
release), or to consider another nontarget host.

Probabilistic risk assessment methods will often
require more data than other approaches, and not
all of them can handle large or complex species net-
works. If they do, there is likely to be a large amount
of information required to untangle the main ecolog-
ical interactions. In cases where accurate estimates of
probability distributions cannot be obtained for input
variables, the precision of the projected outcome(s)
might be limited (especially if these are the most ef-
fective risk factors, although the system’s sensitiv-
ity to that uncertainty can be documented). Com-
plex models may be associated with difficulties to cor-
rectly display the ecological causal links leading to
the projected outcome(s) or to explicitly denote all
the sources and the propagation of uncertainties. The
BN-based assessment approach presented below ad-
dresses the advantages and some of these drawbacks.

3. INFORMING DECISIONS BASED ON
ASSESSMENT PREDICTIONS

3.1. Problem Summary

In evaluating outcome probabilities to advise on
the risk of a proposed BCA introduction, the prob-
lem is to make predictions for a system that does not
yet exist. The accuracy of the assessment depends on
the veracity of assumptions of how BCAs respond to
their new environments. Besides lack of accuracy is
the uncertainty arising from partial information and
incomplete knowledge, lack of field monitoring, en-
vironmental variability, and untested species interac-
tions. To account for uncertainty, ideally, a quanti-
tative BCA risk analysis framework would account
for the phenology, dispersal ecology, reproductive bi-
ology, physiological tolerance ranges, habitat selec-
tion, and host species selection of the BCA, as well
as similar attributes of target and potential NTS, and
the spatial distribution of environmental conditions
at introduction sites and adjacent locations within
the BCA’s potential dispersal range. It is likely many
such attributes will not have been empirically studied
and assessments will rely on expert judgment using
rigorous methods for expert knowledge elicitation to
make this robust.

A probabilistic framework can be useful to de-
pict knowledge levels and propagation and implica-

tions of uncertainty on predicted outcomes. Proba-
bilistic frameworks useful for describing causal dy-
namics in complex systems include structural equa-
tion models (Dawid, 2015) and directed acyclic
graphs (Pearl, 2000), the latter of which can be most
usefully represented with conditional probabilities in
the form of BNs.

3.2. BNs

BNs (Korb & Nicholson, 2011; Pearl, 1988) are
an increasingly popular paradigm for reasoning un-
der uncertainty. BNs are directed acyclic graphs, in
which nodes represent variables and arcs represent
direct probabilistic relations. For a BN that has dis-
crete or discretized variables, the relationship be-
tween variables is quantified by conditional proba-
bility tables (CPTs) associated with each node (an
example is provided in Supplemental Note S1). BNs
allow for a wide range of inferences about the mod-
eled system to be made in an efficient way. Users
can set the values of any combination of nodes
in the network that they have observed, relegat-
ing unobserved variables to their prior probability
distributions, and all evidence propagates through
the network, producing a new posterior probabil-
ity distribution for each variable in the network. In
this context, the reasoning required is a predictive
one; given a scenario of a proposed BCA and NTS,
a BN model can be used to incorporate evidence
about the species, their biological features, and en-
vironments, to compute the quantitative likelihood
of impact. Sensitivity analysis in the form of influ-
ence runs (Marcot, 2012) is used to explore the in-
fluence of the input variables on the output poste-
rior probability distribution. This is done by sequen-
tially selecting each state of the input variable, up-
dating the BN, and recording the range of the out-
put variable’s posterior probabilities in a tornado
plot.

Over the past 20 years, BNs have been widely
used in ecological modeling (see section 5.2.3 in Korb
& Nicholson, 2011). In biosecurity modeling, BNs
have been developed for pest detection and eradi-
cation (Burgman et al., 2010; Dambacher, Shenton,
Hayes, Hart, & Barry, 2008; Horton, Evans, James,
& Campbell, 2009; Murphy, Jansen, Murray, & De
Barro, 2010; Peterson, Rieman, Dunham, Fausch, &
Young, 2008) and for import risk assessment (Hood,
Barry, & Martin, 2009; Jamieson, Woodberry, Mc-
Donald, & Ormsby, 2016; Mengersen et al., 2012).
There have been several assessments of BNs as
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biosecurity tools (e.g., Baker & Stuckey, 2009; Hood
et al., 2009; Hosack, Hayes, & Dambacher, 2008; Wal-
she & Burgman, 2010; Wintle & Nicholson, 2014). To
our knowledge, BNs have never been used for bio-
logical control risk assessments.

4. BN MODEL FOR BCA RISK ASSESSMENT

4.1. Evaluation Components in a Classical
Biological Control Program

A classical biological control program can be
viewed as the deliberate introduction of an invasive
organism (the BCA), where one aims to maximize
the invader’s ability to suppress a target organism
(usually a pest or a weed) while typically ensuring
safety to otherwise valued NTS (native or benefi-
cial introduced species). The target organism is of-
ten an invasive species itself; hence, potential BCAs
are commonly searched for in the area of origin of
the target (Fig. 1—selection of BCA). The list of
BCA candidates is then refined based on a prelimi-
nary evaluation of each candidate’s ability to control
the TS, balanced with a consideration of the negative
effects it could cause in the introduction area. Im-
pacts on NTS are primarily considered, which can be
initially drawn from observations of current interac-
tions between the BCA and related or valued species
in its area of origin. At this stage, the estimated
outcomes of the BCA introduced in a new environ-
ment rely principally on assumptions.

An assessment of the physiological host range of
a candidate BCA is the typical first step in addressing
its potential impact on species in the proposed area
of introduction. It is usually determined prerelease,
based on choice and other response tests evaluat-
ing the attacking behavior and reproductive success
of a BCA with selected NTS (Fig. 1—assessment of
BCA in quarantine). Physiological host range testing
is often used to discard BCA candidates with a host
range wider than just the target. Properly testing all
species that could be threatened by the introduction
of the BCA is difficult in practice due to frequent is-
sues sourcing, rearing, or synchronizing both the NTS
and the BCA (or their appropriate life stages). The
physiological host range of a BCA, as evaluated in
the laboratory, may significantly differ from its eco-
logical host range, which requires the consideration
of other field constraints, such as habitat or seasonal
matching.

Components related to the initial selection of
candidate BCAs are shown in the top part of the di-
agram (green-colored box). This evaluation usually
consists of a pre-import analysis of the biology and
behavior of the agents in the area of origin of the pest
or weed.

4.2. BAIPA

We propose here a new tool to assess the poten-
tial negative ecological impacts of candidate BCAs
on individual, at-risk NTS. The BAIPA uses a proba-
bilistic BN-based model to combine nine evaluation
components to assess the probability that an intro-
duced BCA will reduce the population of a speci-
fied NTS in a specified habitat (Fig. 2). The model
evaluates key species interactions, such as the fre-
quency of encounters between the BCA and the NTS
(based on local species abundances and the possibil-
ity of spatial and temporal overlap) and the local fre-
quency of successful attacks (based on likely inter-
actions between the BCA and the NTS) and consid-
ers potential indirect effects to estimate the overall
probability for population impact (Table I). All eval-
uations are based on an extrapolation from the sit-
uation where the BCA successfully establishes and
controls the original TS in all habitats where the tar-
get occurs.

BAIPA aims to support management decisions in
biological control programs (Fig. 1—assessment for
release decision). The outcome from BAIPA (com-
ponent 9 in Fig. 2) indicates that the probability of a
reduction in the population of the selected NTS fol-
lowing release of the BCA is either minimal (sup-
porting a decision to release), too great (support-
ing a decision not to release), or too uncertain (sup-
porting a requirement for more information on the
BCA and/or NTS to enable a technically justified
decision to be made). BAIPA is built on a discrete
BN comprising the nine evaluation components de-
scribed in Table I. Throughout the evaluation compo-
nents, the BN propagates uncertainty by calculating
posterior probability distributions among the states
of each model variable; a greater spread of proba-
bilities among variable states denotes greater uncer-
tainty. A more detailed description of all model vari-
ables and their possible states are provided in Table
S1, including the descriptions of the main relation-
ships between variables that have been used to quan-
tify the CPTs. A case study is presented below on as-
sessing the potential negative impact on a native wee-



8 Meurisse et al.

Fig 1. General evaluation components in the risk assessment of a biological control agent (BCA). Components related to the assessment of
candidate BCAs for the area of introduction are shown in the bottom part of the diagram (blue-colored boxes). This part of the evaluation
usually consists of the selection of non-target species (NTS) and testing in quarantine conditions (assessment of the physiological host range
of the candidate BCA) and a general evaluation for release (assessment of the ecological host range and potential impact of the candidate
BCA should it be released in the natural environment). The Biocontrol Adverse Impact Probability Assessment (BAIPA) aims to advise
whether a BCA is low risk (safe for release), high risk (unsafe for release), or the risk level is too uncertain (more information is required)
for each NTS identified to be at risk. ERBIC = Evaluating Environmental Risks of Biological Control Introductions into Europe (Van
Lenteren et al., 2003); PRONTI = Priority Ranking of Non-Target Invertebrates (Todd, Ramankutty, Barraclough, & Malone, 2008; Todd
et al., 2015).

vil species (NTS) associated with the introduction of
a BCA targeting a pest weevil (TS) in New Zealand.

4.3. Case Study and Application

The lucerne pest, S. discoideus (Coleoptera: Cur-
culionidae), a weevil first recorded in New Zealand in
1974, rapidly became recognized as a serious pest af-

fecting lucerne (alfalfa, Medicago sativa), a perennial
legume (Goldson, Frampton, Barratt, & Ferguson,
1984). The introduction in 1982 of a hymenopteran
endoparasitoid, M. aethiopoides (Braconidae:
Euphorinae), successfully reduced S. discoideus
populations providing benefits to farmers (Goldson
et al., 1993). Concerns arose when it was discovered
that 19 species of nontarget weevils were attacked in
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Fig 2. High-level structure of the
Bayesian network (BN) model used
to assess the nontarget impacts of
BCAs. The “Biocontrol Adverse Impact
Probability Assessment” (BAIPA) tool
comprises nine interconnected BN model
components (Table I) to assess the
ecological overlap between a BCA and
a nontarget species (NTS) (components
1 to 6), and their physiological matching
and potential for direct and indirect
impacts (components 7 to 9). Data on the
target species (TS) is also used.

the field, 14 of which are native species (Barratt &
Johnstone, 2001; Barratt et al., 2007, 2010). The non-
target parasitism associated with the introduction of
M. aethiopoides in New Zealand provides an inter-
esting case of a BCA initially expected to establish
only in the receiving environment (lucerne crops and
pastures) but which has now established populations
in natural ecosystems (mainly mid-altitude native
tussock grasslands that are habitats for native weevil
species). Microctonus aethiopoides has a weak flight
capability and the propensity of M. aethiopoides
to colonize remote habitats may principally occur
via the large numbers of parasitized adult weevils
dispersing away from lucerne crops to aestivate in
distant sites (Barratt et al., 2010; Ferguson, Kean,
Barton, & Barratt 2016). Whether the observed non-
target parasitism results principally from summer
“spillover” from lucerne crops or from the locally
sustained reproduction of M. aethiopoides on NTS
in these remote habitats or both remains unclear

(Ferguson et al. 2016). Here, we use this example to
retrospectively test BAIPA for its ability to assess the
probability a BCA will have a negative effect on NTS
populations. Table S2 provides summaries of existing
knowledge and their interpretation as probability
distributions used to inform input variable states for
this case study.

Before beginning the assessment, the assessor
must clearly define the identity of the BCA, TS, NTS,
and one or multiple habitats of interest to evalu-
ate. BAIPA is run separately for each habitat to be
tested. We suggest that the habitat of BCA introduc-
tion should be tested first, then the habitat where the
TS and the NTS are the most likely to coexist, then
“refuge” habitats for the NTS (e.g., native environ-
ments). “Fact sheets” should be provided by the ap-
plicant for this purpose, including a collation of avail-
able information on the presence and abundance of
the different species (see Table S2 for an example).
This information will often be incomplete, but the



10 Meurisse et al.

Table I. Model Components in Biocontrol Adverse Impact Probability Assessment (BAIPA). The High-Level Structure of the Bayesian
Network (BN) Model is Shown in Fig. 2. A full Data Dictionary, Including Detailed Nodes and States Definitions, is Provided in Table S1.
The Model is Run Separately for each Combination of Biological Control Agent (BCA), Target Species (TS), Nontarget Species (NTS),

and Habitat

Model Component Description Input Required from Assessor

1. TS/NTS habitat and
abundance

States the abundance of the TS
and NTS populations within the
considered NTS habitat

Size and stability of the TS
population in habitat

a
Size and

stability of the NTS population
in habitat

a
Spatial proximity to

nearest TS habitat (if TS
absent)

a

2. BCA long-distance
dispersal

Evaluates the frequency at which
BCA individuals disperse
outside their habitat of
introduction

Long-distance passive dispersal
ability of the
BCA

b
Long-distance active

dispersal ability of the BCA
b

3. Short- and
medium-range attraction

Evaluates whether BCA
individuals are attracted to the
NTS within the considered NTS
habitat

Direct attraction of BCA to NTS
(medium-distance)

b
Indirect

attraction of BCA to NTS
(medium-distance)

b
Direct

attraction of BCA to NTS
(short-distance)

b
Indirect

attraction of BCA to NTS
(short-range)

b

4. BCA habitat and
abundance

Evaluates the abundance of the
BCA population within the
considered NTS habitat

No input required, determined by
other factors in the model

5. Temporal window Evaluates the level of activity of
the BCA during the period
when susceptible life stages of
the NTS are present, within the
considered NTS habitat

Seasonal match between the NTS
and the BCA

b,c
Reproductive

phenology of the BCA
b

6. NTS-BCA encounters Evaluates the frequency of
encounters between the BCA
and the NTS within the
considered NTS habitat

No input required, determined by
other factors in the model

7. Direct impacts Evaluates whether the
introduction of the BCA has a
direct negative impact on the
NTS population within the
considered habitat

Frequency of attacks when BCA
encounters NTS

b
Mortality

frequency of NTS after
attack

b
Frequency of non-lethal

attacks that affect the fitness of
NTS

b

8. Indirect impacts Evaluates whether the
introduction of the BCA has an
indirect negative impact on the
NTS population within the
considered habitat

Indirect impact potential of BCA
on NTS

b,d

9. Impacts Evaluates whether the
introduction of the BCA has an
overall negative impact on the
NTS population within the
considered habitat

No input required, determined by
other factors in the model

aSpecies abundance inputs will be directly informed by the “fact sheets” summarizing the identity and local abundance of the organisms
considered in the assessment. It may take the form of a probability distribution to consider uncertainty. The outcome of the assessment will
be more informative to the assessor if assumptions are made on these inputs under the form of “worst cases” or “what if” scenarios.
bSpecies ecological and biological inputs will be entered by the assessor under the form of a probability distribution based on the information
provided by the applicant, eventually completed by additional information or knowledge gathered by the assessor. A “default” probability
distribution can be used in case no information is available at all. This “default” distribution can be uniform or may depend on the type of
organism investigated.
cThe temporal match between the NTS and the BCA can be directly informed by the user or estimated from the known seasonal activity
patterns of both the NTS and BCA.
dEvaluating the outcome of indirect interactions between a BCA and an NTS can be complex. It is therefore recommended that, first,
assumptions of no possible indirect impacts, and second, assumptions of realization of the most severe impact from all possible outcomes
are tested. This is equivalent to testing best and worst-case scenarios for indirect interactions.
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NTS will be assumed present in the habitat under
evaluation (as the reason for assessing NTS impact
in this habitat), while the TS can be present or ab-
sent. Available information on the BCA can be pro-
vided but is not required as an input to the model. In
a situation where biologically or ecologically distinct
NTS have been identified as “at risk” (for instance
using tools such as host range tests), these will each
be evaluated in successive model runs.

Here, we retrospectively assessed the impact of
M. aethiopoides on the native weevils in the genus
Nicaeana (Curculionidae: Entiminae) in low graz-
ing intensity pastures and mid-altitude native tussock
grassland. Permanent populations of M. aethiopoides
are generally established in pasture habitats, where
they successfully control the target S. discoideus. In
low grazing intensity pastures (hereafter referred to
as pastures), S. discoideus (and M. aethiopoides) co-
exist with resident populations of native weevils, in-
cluding species in the genus Nicaeana, such as N.
cinerea and N. cervina. Sitona discoideus and these
endemic Nicaeana weevils are also established in na-
tive tussock grassland (hereafter referred to as native
grassland). These are distant from pasture environ-
ments and considered a “refuge” habitat for native
weevils in the genus Nicaeana. Additional knowledge
required as user input in BAIPA is provided in Table
S2.

4.4. Results of Running BAIPA for the Case Study

Fig. 3 shows the BAIPA BN for the described
case study, simplified to show only the key variable
components.1 The BN calculates the probability that
the parasitic wasp M. aethiopoides (the BCA) will
have an impact on populations of native weevils in
the genus Nicaeana (the NTS), given the set of inputs
(Table S2). For this case study example, the BAIPA
BN predicts there will be a 10% probability of BCA
impact on NTS population (i.e., an arguably substan-
tial population reduction of Nicaeana weevils) in na-
tive grassland, denoting the results as a 6% proba-
bility of BCA direct impact on NTS population and a
5% probability of BCA indirect impact on NTS pop-
ulation.

Fig. 4(a) is a sensitivity tornado plot for the case
study BN (Fig. 3), showing the sensitivity of the out-
put variable probability (BCA impact on NTS pop-
ulation = Yes) to the observations on the key inter-
mediate and input (indicated by asterisk in Fig. 4(a))

1For the detailed model components, see Table S1.

variables. Using the case study inputs as baseline,2

the tornado plot shows the range of output probabili-
ties (i.e., BCA impact on NTS population) that result
when specifying each possible state for each individ-
ual node. For example, BCA impact on NTS popu-
lation = Yes varies between 5% and 75%, as differ-
ent states of the intermediate variable NTS/BCA en-
counters are tested. On the other hand, the model is
almost completely insensitive to the NTS non-lethal
fitness impact after attack variable3 because success-
ful attacks with this particular BCA will most likely
cause mortality of this particular NTS as indicated
by the NTS mortality after successful attack variable
(65% probability of a successful attack eventually
killing the host).

Next, we ran sensitivity analyses for the direct
and indirect impact intermediate output variables.
As shown in Figs. 4b and c, the BCA direct im-
pact on NTS population value is primarily driven by
NTS/BCA encounters, and the BCA indirect Impact
on NTS population value is primarily driven by the
BCA population in habitat input. In addition to pro-
viding insight into the key driving influences on the
variable of interest, these sensitivity analyses can be
used to indicate where input value refinement would
be most beneficial, that is, for variables that may be
least well known (greatest uncertainty) but having
the highest potential influence on outcomes. A repli-
cated analysis, addressing pastures, is presented in
Figs. S1 and S2 (Figs. S3 and S4 are for the native
grassland case).

5. DISCUSSION

5.1. Ecological Risk Assessments for Species
Introduced into New Environments

Risk is defined as the product of the magnitude
of an undesirable outcome and the probability of that
outcome occurring. More specifically, and in the con-
text of using BCAs, risk is the intersection of hazard
(potential adverse impacts on NTS), exposure (over-
lap of BCA and NTS), and vulnerability (probabil-
ity and uncertainty of impacts) (Füssel, 2007). Per-
forming a quantitative risk assessment for a species
moving into a novel environment requires a prospec-
tive evaluation of the probability and consequences

2All bars are centred on 10%, which is the base value for BCA
Impact on NTS.

3This includes its parent variables, which have been omitted from
the results here.
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Fig 3. BAIPA BN model: Case study of the BCA Microctonus aethiopoides impact on NTS, native weevils in the genus Nicaeana (Cur-
culionidae: Entiminae), in mid-altitude native tussock grassland. The BN predicts there will be a 10% probability of BCA impact on NTS
population, divided between a 6% probability of direct impact on NTS population and a 5% probability of indirect impact on NTS popula-
tion. Data on the TS, Sitona discoideus, is also used. The numbers in square brackets associated with the model nodes (each individual box)
refer to the model components that use them (see Fig. 2 and Table I). Key input variables shown in the diagram are indicated by an asterisk.
A complete description of the model structure and definitions of all variables and states are provided in Table S1.

of a series of events that have yet to occur. For
any introduced species, this series of events can be
broadly characterized by the different phases of the
invasion process: entry, establishment, growth, and
spread, along with the probabilities and uncertainties
of each event occurring. For pests and other species
that might become a nuisance in areas of introduc-
tions, a risk assessment typically is based on an in-
depth evaluation of all invasion phases, as well as on
an evaluation of the negative economic and/or envi-
ronmental impacts in potentially invaded areas (An-
dersen, Adams, Hope, & Powell, 2004). For BCAs
and other intentionally introduced species, organisms
are selected based on their ability to successfully es-

tablish, increase population size, and spread in the
introduction area. Risk assessments of these organ-
isms, therefore, put emphasis on a comparison of the
potential benefits (usually economic) with the poten-
tial adverse effects (usually environmental) (Heim-
pel & Cock, 2018). A difficulty in performing full
risk assessments of introduced species resides in the
lack of knowledge about novel ecological interac-
tions. No two receiving environments are the same,
and a risk assessment is a forecast that can be made
only with the best data available, which does not in-
clude every eventuality that might not be predicted
in the new environment. For instance, many species-
to-species interactions may not exist anywhere else.
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Fig 4. (a) Sensitivity tornado plot for the case study BN network (native grassland), showing the sensitivity of the output variable probability
(BCA impact on NTS population = Yes) to the observations on the key intermediate and input (indicated by asterisks) variables. Each plot
indicates the range of output probabilities that result when specifying each possible state for each individual node. The blue component of
each plot shows the reduction in probability achievable, and the red component shows the increase. The BCA impact on NTS population is
most sensitive to the intermediate variables NTS/BCA encounters and BCA population in habitat. Of the input variables, BCA impact on
NTS population is most sensitive to the TS population in habitat and BCA indirect impact potential on NTS population. (b) and (c) Sensitivity
tornado plot for the case study BN network (native grassland), showing the sensitivity of (b) the direct impact p(BCA direct impact on NTS
population = Yes) and (c) the indirect impact p(BCA indirect impact on NTS population = Yes) probabilities to the observations on the key
intermediate and input (indicated by asterisks) variables. The direct impact is most sensitive to the NTS/BCA encounters and NTS/BCA
temporal match for encounters. The indirect impact is most sensitive to the BCA population in habitat and BCA indirect impact potential on
NTS population. Note that variables with zero sensitivity have no causal relationship with the target variable. The corresponding sensitivity
tornado plots for low grazing intensity pastures are presented in Figs. S2 and S4.
Note: In some cases, variables may be sensitive through a common cause. For example, NTS/BCA encounter rate and indirect impact have
the active BCA population size as a common cause.
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BCAs for instance, besides their assumed beneficial
roles, may negatively affect native species and other
valued nontarget organisms in multiple ways. They
may directly feed on the local flora and fauna or af-
fect other species’ populations through cascading in-
direct interactions via the food web (Louda et al.,
2003; Messing, Roitberg, & Brodeur, 2006). Poten-
tial indirect interactions between BCAs and other
organisms can be identified from actual knowledge
of the ecological community, including many inter-
actions that could lead to negative impacts (Todd et
al, 2020). Despite increasing efforts to monitor ac-
tual ecological impacts of BCA introductions, most
of these interactions remain more hypothetical than
realized, and the number of historical biological con-
trol cases that have had reportedly harmful ecologi-
cal impacts remains small (Heimpel, & Cock, 2018).

5.2. BAIPA, a New Tool to Support Release
Decisions of BCAs

Current models and tools support the selection
of appropriate BCAs based on their potential to sup-
press the target and predicted safety to NTS based
on quarantine screening. They help to prioritize at-
risk NTS for further assessment, often in quarantine
laboratory trials to evaluate the BCA host attraction
and physiological host range. We propose here a new
tool, BAIPA, that complements these existing tools
by incorporating all gathered knowledge on the BCA
and NTS interactions and enabling for a compre-
hensive assessment of the adverse impact of a BCA
on populations of at-risk NTS. BAIPA explicitly de-
notes probability distributions of all linked events,
thereby providing vital information on the degree
of certainty and uncertainty of outcomes throughout
the causal network of events. We aim for BAIPA to
assist risk-management decision making for the re-
lease of BCAs by providing:

• reproducible evaluations of the ecological host
range of a BCA, including the probability of in
situ encounters with NTS in different habitats,
and an evaluation of the BCAs impact at the
population level;

• a method to incorporate information from var-
ious sources, including quantitative, qualitative,
and expert knowledge;

• a display of the order of events that result in
potential impacts on the NTS, including their
quantification (conditional probabilities) and
the propagation of uncertainties (variability, er-

rors, etc.) associated with the model structure
and parameter estimates; and

• a transparent and consistent decision-support
tool, to help visualization of all input factors, in-
termediate calculations, and outcome probabil-
ities in the model, with capacity for sensitivity
analysis and scenario testing.

Thus, BAIPA can be seen as an additional tool
to help decisionmakers assess the risk of releasing
BCAs into new environments. As with other risk as-
sessment tools, BAIPA can be used as a component
of more complete biocontrol risk assessment frame-
works (e.g., Fig. 1; Paula, Andow, Barratt, Pfannen-
stiel, & van Lenteren, 2019; Paula et al., 2021). Fur-
ther discussion of the important attributes offered by
BAIPA are given below.

5.3. Ecological Host Range Evaluation

Current risk assessment frameworks for BCAs
put very little emphasis on the ecological host range
of the BCA and often do not consider ecological bar-
riers that occur in field conditions and that might
restrict host accessibility or that might reduce the
success rates of attacks toward nontargets. Instead,
there is a focus on physiological host range testing
to provide laboratory-based quantified predictions
of the injurious potential of a BCA on each NTS.
Physiological compatibility is a key prerequisite for
a BCA to have an impact on an NTS population,
and this can be tested in quarantine conditions, pre-
release. If one bases predictions too strictly on phys-
iological host testing data to estimate the outcome
of direct interactions between BCAs and NTS in the
field, there is the potential to overestimate or, per-
haps more grievously, underestimate the risk (Bar-
ratt et al., 2010; Heimpel & Cock, 2018; Simberloff
& Stiling, 1996).

On the one hand, for some BCAs, the ecologi-
cal host range tends to be narrower than the physi-
ological host range because of ecological barriers re-
ducing exposure for NTS (Haye, Goulet, Mason, &
Kuhlmann, 2005; Heimpel & Mills, 2017). For exam-
ple, limitations in spatial and temporal co-occurrence
have been shown by Wyckhuys, Koch, Kula, and
Heimpel (2009) to reduce the exposure of native
aphids to the braconid Binodoxys communis (a par-
asitoid released for control of the soybean aphid
pest, Aphis glycines). “No release” decisions based
solely on physiological matches between a BCA and
NTS denote a somewhat precautionary approach in
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biological control programs. However, they might
constitute false positive errors, that is, falsely assum-
ing a potential, salient negative impact of the BCA on
the NTS, when the impact could be minor or insignifi-
cant. In certain cases, more detrimental environmen-
tal consequences could result from this precautionary
approach relative to a small risk of nontarget impact,
for instance as effective BCA releases may have al-
lowed a substantial reduction of pesticide use.

On the other hand, one cannot always assume
the physiological host testing has properly tested all
“exposure” situations that could occur in the field.
For instance, encounter conditions and attack behav-
iors may be induced by specific conditions that could
not always be reproduced in quarantine conditions
(especially with a limited budget); that is, to test all
combinations of life stages, physiological states, en-
vironmental cues, and other factors is usually not
possible. For example, following relatively extensive
laboratory tests showing no native gall-makers were
suitable hosts for Torymus sinensis (a hymenopteran
BCA released in Italy against the chestnut gall wasp
Dryocosmus kuriphilus), postrelease surveys showed
occasional, unexpected parasitism in the oak gall-
maker, Biorhiza pallida (Ferracini et al., 2015). An-
other example is the beneficial weevil Rhinocyllus
conicus (as a BCA of exotic thistles), which was
tested in quarantine in New Zealand as a potential
NTS for M. aethiopoides. Tests were carried out with
R. conicus adults that were in diapause and nonac-
tive, and no attacks were observed on the species. In
the field, some attacks were observed post release,
later confirmed by records of successful attack be-
haviors in the laboratory when mobile and active R.
conicus adults were used (Barratt, 2004). This would
constitute a false negative error, that is, the predic-
tion made at the time was for no impact when the
actual impact could have been substantial.

A “release” decision based solely on evidence of
a physiological mismatch between a BCA and NTS,
usually based on limited, or sometimes disparate and
contradictory results, cannot, therefore, be necessar-
ily considered the most prudent and efficacious ap-
proach. To avoid such errors, BAIPA uses a single,
integrated, ecological model to consider how a BCA
could disperse to field environments beyond those
used by the TS, whether it may encounter NTS, and
whether it may attack and potentially impact NTS
population levels. It does so following the recommen-
dations of Kaufman and Wright (2017), by integrat-
ing quantitative estimates of the probability of “ex-
posure” of the NTS to the BCA, with estimates of

the probability of “effects” on the NTS population
conditional on exposure. Probability distributions of
events are provided for every ecological interaction
assessed in the model, down to the final evaluation of
a population-level negative or positive impact on the
NTS.

5.4. Management and Implications of
Uncertainties

BAIPA provides a risk analysis framework that
decisionmakers can use in risk management by help-
ing to articulate decision criteria expressed as prob-
abilities of negative impact outcomes that would be
acceptable or unacceptable in comparison to ben-
efits (Heimpel & Cock, 2018). Outcomes from the
BAIPA BN are not intended to dictate decisions on
BCA introductions but instead help inform a science-
based decision. It is a matter of policy, management,
and communication to define acceptable probability
levels of BCA impacts on NTS (Ehlers, 2011; Lons-
dale et al., 2001). Instead, the BN model serves to
document current knowledge, to illustrate the key
causal factors leading to the outcomes, and to depict
the implications of how variations or uncertainties
in the inputs propagate throughout the causal web
of conditions and relations. BAIPA considers uncer-
tainties associated with quantitative predictions, ad-
dressing general guidelines for biosecurity risk as-
sessment (e.g., International Standard for Phytosani-
tary Measures 2, 3, 11), and other expert recommen-
dations (e.g., Kaufman & Wright, 2017, for biologi-
cal control). In this respect, BAIPA complements ex-
isting tools developed under international guidelines
and codes of conduct relevant to the introduction of
BCAs. Other examples of international and national
organizations that regulate or advise on the release of
BCAs are documented in Lockwood, Howarth, and
Purcell (2001), van Lenteren et al. (2006), and Bar-
ratt and Ehlers (2017).

BAIPA coupled with sensitivity and scenario
testing provides the user with the capability to de-
termine which factors are the most influential, that
is, could most affect outcomes of BCA impacts on
NTS populations and that are least understood. Such
information can be invaluable for prioritizing future
field monitoring and targeted research effort.

5.5. Case Study

Generally, traits that contribute to the success
of BCAs, such as a capacity for establishment,
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survival, population increase, and dispersal, are traits
that enhance the likelihood of adverse ecological im-
pacts (Barratt et al., 2010; Louda et al., 2003), and
these will generally be identified to have the great-
est influence on the BAIPA model output. The par-
asitoid M. aethiopoides has been shown to attack
many weevil species, both in laboratory quarantine
trials and during field assessments in productive and
natural ecosystems (Barratt & Johnstone, 2001; Bar-
ratt et al., 1997, 2007). These include the target pest
species, S. discoideus, and several native weevils in-
cluding those in the genus Nicaeana. In our case
study, we retrospectively investigated the actual risk
for Nicaeana weevil populations being impacted by
M. aethiopoides in a full ecological context not just
considering them as physiological hosts but also con-
sidering their risk of exposure to the parasitoid.

The model showed that encounters between M.
aethiopoides and Nicaeana weevils are principally
driven by the abundance of the BCA and NTS in the
habitat. Given the relatively small sizes of the popu-
lations for both species, encounters should be uncom-
mon in both pastures and native grassland (87% and
92% probability that the nontarget weevils never4

encounter the parasitoid). Thus, although the BCA
has high rates of attack success5 with these NTS, the
low probability of encounters resulted in predictions
of low parasitism levels.

For pastures, the model predicted an 87% prob-
ability of no or low levels of weevil parasitism and
a 12% probability of occasional weevil parasitism6.
These results concur with observations from Bar-

4From predictions for the “NTS BCA encounters” node (Figs. 3
and S1). The state “never” corresponds to less than 5% of NTS
individuals encounter the BCA (Table S1).

5From user input for the “BCA attacks NTS when encounters”
node (Table S2). Attacks are considered to occur frequently
within the population with an overall 95% probability, divided
between a 45% probability for the state “always” (defined as a
situation where more than 80% of susceptible individuals in the
NTS population are attacked by the attacking stage of the BCA,
Table S1), and a 50% probability for the state “sometimes” (de-
fined as a situation where between 20% and 80% of susceptible
individuals in the NTS population are attacked by the attacking
stage of the BCA).

6From predictions for the “BCA attacks NTS” node (in compo-
nent 7 “direct impacts”, not shown in Figs. 3 and S1 but described
in Table S1). The state “never”, predicted at 87% probability
of occurrence for pastures and at 92% for native grassland, cor-
responds to less than 20% of NTS individuals attacked by the
BCA. The state “sometimes”, predicted at 12% probability of
occurrence for pastures and at 7% for native grassland, corre-
sponds to between 20% and 80% of NTS individuals attacked
by the BCA.

ratt, Ferguson, Evans, McNeill, and Addison (2000),
where averages of 4–5% parasitism of Nicaeana spp.
by M. aethiopoides were recorded in old pastures
in the South Island of New Zealand. The highest
recorded level of Nicaeana spp. parasitism was 51%
at one of the Otago survey sites. For native grass-
land, the model predicted a 92% probability of no
or low levels of weevil parasitism and a 7% probabil-
ity of occasional weevil parasitism8. Ferguson et al.
(2016), working in native grassland sites in the South
Island of New Zealand, reported 7.8% parasitism of
Nicaeana species by M. aethiopoides, with no notice-
able impact on the population level over a period
of more than 10 years. At one site, a middle alti-
tude (780 m ASL) lightly grazed native grassland,
parasitism rates peaked at 23.5% in summer (Barratt
et al., 2007). This site was also the site with the high-
est recorded weevil abundance out of the nine survey
locations. Our results suggest that the probability of
encounters between this parasitoid and these NTS is
the most influential factor conducive to population
impact, in either native grassland or pastures. Re-
sults of the sensitivity analysis (Fig. 4) show these en-
counters are largely influenced by the possibility of a
temporal match and the respective abundances of all
three species (BCA, NTS, and TS) in the habitat. The
abundance of the NTS and the TS are model inputs
(both are present in most grassland and pasture habi-
tats), whereas the abundance of the BCA and the
spatial and temporal matches with the BCA, and the
probability of encounters, are predicted by the model
based on several factors such as the BCA’s dispersal
and host-finding capability. Consequently, predicting
the likelihood that populations of Nicaeana weevils
would be parasitized by M. aethiopoides relied on ac-
curate abundance data for both the target and NTS in
the habitat(s) of interest and information on the dis-
persal and host-finding capability of the BCA. In this
case study, long-distance dispersal of the BCA does
not appear to be a key influential factor because the
target is present in a majority of New Zealand na-
tive grasslands and pastures, and therefore the BCA
is expected to be present too.

Once the ecological constraint of an encounter
between the two species is removed (as shown by a
sensitivity analysis or conducting a what-if scenario),
high parasitism levels are predicted (a 95% overall
probability that more than 20% of NTS individuals
are attacked, in both habitats6), and a direct impact
at the population level is expected (77% and 83%
probability of a reduction of the nontarget popula-
tion, in pastures and native grassland, respectively,
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Figs. 4b and S2a). Ferguson et al. (2016) performed
field trials for parasitism of Nicaeana spp. caged with
M. aethiopoides and observed an average 40.6% par-
asitism rate. These slightly lower than expected par-
asitism rates may have been driven by a low propen-
sity for M. aethiopoides to search microhabitats oc-
cupied by Nicaeana weevils (i.e., short-range attrac-
tion), hence low levels of actual exposures occurred
despite the cages (i.e., 160 × 180 mm x 75 mm deep).
Another explanation might be due to lower attack
rates or parasitism success than those expected from
laboratory host testing.

Overall, our model predictions matched the field
observations, while erring on the side of caution.
Nonetheless, these results pertain specifically to our
current understanding of the Microctonus–Sitona–
Nicaeana system in New Zealand. They may dif-
fer somewhat for the same species when the BN
model parameters are updated with empirical evi-
dence or further expert knowledge elicitation. Re-
sults are likely to differ for other species with differ-
ent biological and ecological attributes.

The relationship between individual-level impact
(the proportion of the population that is attacked)
and population-level impact (the proportion of re-
duction in the population over multiple generations)
is particularly difficult to evaluate. A rule of thumb
derived from the meta-analysis by Hawkins and Cor-
nell (1994) analyzing 787 parasitoid introductions
suggests little impact is expected to arise from par-
asitoids unless parasitism rates exceed 32%.

Our own results predicted that direct impacts on
Nicaeana populations are unlikely (91% and 94%
probability that the BCA does not directly impact the
NTS population7 in pastures and native grassland, re-
spectively). Kean and Barlow (2000, 2001) showed
that the intrinsic rate of increase of the hosts is critical
to determining the population impact of Microctonus
on weevils. For the TS, S. discoideus, field sampling
in South Australia showed no measurable impact on
the TS at the population level even with 50–60% par-
asitism (Hopkins, 1989). In contrast to Sitona weevils,
which produce hundreds of eggs, Nicaeana species
have a low reproductive potential estimated to less
than 50 eggs (number of eggs produced by fecund fe-
males ranged from 3.5 to 6 per five-day period during

7From predictions for the “BCA direct impact on NTS popula-
tions” node (Figs. 3 and S1). The state “no direct impact” corre-
sponds to no substantial reduction of the NTS population in the
habitat through direct interactions (parasitism in this case, Table
S1).

the reproductive season, Barratt et al., 2016) and are
more likely to be affected at such parasitism levels.

Population dynamic mechanisms are difficult to
evaluate when a parasitoid and at least two poten-
tial host populations coexist. BN models do not allow
incorporation of feedback loops (e.g., to model pop-
ulation interactions) but can set dynamic processes
based on time steps (e.g., considering rates of in-
crease). The complexity of space and time interac-
tions with multiple species in a dynamic BN frame-
work requires a much more complex model struc-
ture that would make the model more difficult to pa-
rameterize and navigate. Instead, we suggest the user
trials a series of “what-if” scenarios, by setting dif-
ferent habitat-relative abundances for the target and
NTS (and possibly the BCA). This would allow, for
instance, estimations of levels of attack and impacts
realized in the field by BCAs either introduced via
spill-over from distant populations or via permanent
cycling locally. Tools such as BAIPA are well-suited
for extensive model experimentations of this type.

5.6. Limitations and Possible Improvements

With the Bayesian approach used in BAIPA, pre-
dictions rely on the quality of the model structure, on
the underlying conditional probabilities propagating
the outcome and associated uncertainty throughout
the model, and on the prior probability distributions
on the input variables, as they can be used in place of
missing data (Marcot et al. 2019).

BAIPA comes as a decision-support tool based
on multiple sources of information, including quan-
titative scientific data, technical expert reports, and
views from stakeholders and the public. When in-
formation for some input variables is lacking, prior
probability distributions can be used as the default,
as estimated from other BCA systems. In the current
version of BAIPA, we have estimated all prior proba-
bility distributions and parameters of the CPTs based
on our knowledge of ecological interactions between
parasitoid wasps attacking defoliating insects (Table
S2). These parameters pertain to the configuration of
the model as an “alpha-level” model (in the sense
used by Marcot, Steventon, Sutherland, & McCann,
2006) and use a parasitoid-host system as a guide.

To ensure that the model is rigorously devel-
oped, and therefore credible, one would require
other subject-matter domain experts to perform a
formal peer review and potentially recommend re-
visions of the prior probability distributions and the
parameters of all CPTs and potentially of the model
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structure itself. The use of BAIPA for the predic-
tion of other trophic interactions may provide limited
assurance of reliability and accuracy if built solely
on the basis of parasitoid–host interactions. Several
sets of model parameters should be developed, and
the structures of some of the submodels could be
altered, such as to accommodate predator–prey or
herbivore–host plant systems. Following peer review,
additional next steps in the model-building process
are necessary to ensure rigorous expert-based con-
struction of the “beta-level” model to warrant its
credibility. Guidelines to transition from a “beta-
level” to a “gamma-level” model are provided in
Marcot et al. (2006) and include testing the model
with case data (so that the prediction accuracy of the
current model can be estimated) and its recalibration
with these case data (allowing the model to better fit
known examples and to handle missing data).

This testing and calibration process can be empir-
ically expensive, that is, needing extensive data such
as laboratory testing or field observations. The lack of
specific field studies of BCA impacts and nontarget
population-level outcomes, in particular, can prevent
estimates of false negative and false positive model
predictions. Pre- and postrelease population data are
rarely available, in particular when long time-series
data from multiple sites are needed to balance tem-
poral and spatial differences in population dynamics.
Lynch et al. (2001) reported that only 4.5% of arthro-
pod BCAs released worldwide were evaluated for
population impacts on NTS and were properly stud-
ied for impacts on TS.

For both target and NTS, alternative ways of es-
timating BCA impacts have been developed based
on population models (Barlow, Barratt, Ferguson,
& Barron, 2004; Barron, 2007), or based on mod-
els combined with experimental data obtained in
containment (Raghu, Dhileepan, & Scanlan, 2007;
Raghu, Dhileepan, & Treviño, 2006) and in the field
(Boettner, Elkinton, & Boettner, 2000; Carvalheiro
et al., 2008). As other input variables or intermediate
outcomes might be lacking for the case data, these
can be estimated based on demographic modeling
(e.g., Raghu et al., 2007), dispersal modeling (e.g.,
Kimberling, 2004), parasitoid–host (or predator–
prey, or herbivore–plant) dynamics (e.g., Grasman,
van Herwaarden, Hemerik, & van Lenteren, 2001),
or indirect effects estimation (e.g., Todd, Pearce, &
Barratt, 2020). Such approaches provide an improve-
ment, but certain relationships remain difficult to
capture, such as the functional relationship between
attack and population effects (affected by the intrin-

sic growth rates of the populations; Mills & Kean,
2010). Our probabilistic modeling approach provides
a flexible framework by which such additional con-
siderations and biological effects can be layered into
the dynamics and calculations of BCA-NTS impacts.

6. CONCLUSION

For the purpose of risk assessment of potential
impacts of BCAs on NTS, we found that the BN
modeling approach provides the following significant
advantages: (1) it displays outcomes as probabilities
that work well in a risk management framework; (2)
it explicitly shows the propagation of uncertainties
and their implications for predictions; (3) through
sensitivity and influence analysis, it provides an easy
way to determine the relative influence of potential
alternative management actions and prior conditions
on outcomes; and (4) models can be run efficiently
for sets of scenarios of alternative environmental and
management conditions. The new BAIPA currently
incorporates a BN model that assesses the risk for
NTS to be negatively affected by the release of a
BCA.

BAIPA has been developed with the potential to
be turned into a designed-for-purpose web tool avail-
able for risk assessors and may support national reg-
ulatory authorities, such as the Environmental Pro-
tection Authority in New Zealand or the Animal and
Plant Health Inspection Service in the United States,
in their decision making to release BCAs. Eventu-
ally, model outcomes from BAIPA can be incorpo-
rated into a structured decision-making framework
that may include a formal comparison between mul-
tiple risks and benefits associated with the potential
or planned release of the BCA. It is important that
such decisions are based on risk assessments that in-
corporate the most relevant ecological information
within a logical, coherent, and transparent ecological
framework. Hence, the accuracy of predictions will
primarily depend on the veracity of assumptions of
how BCAs respond to their new environments.
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Fig. S1. “Biocontrol Adverse Impact Probability As-
sessment” (BAIPA) Bayesian network (BN) model:
Case study of the impact of the biological con-
trol agent (BCA), Microctonus aethiopoides, on non-
target species (NTS), native weevils in the genus
Nicaeana (Curculionidae: Entiminae), in low grazing
intensity pastures.
Fig. S2. Sensitivity tornado plots for the case study
BN of the impact of the BCA, M. aethiopoides, on
NTS, native weevils in the genus Nicaeana (Cur-
culionidae: Entiminae), in low grazing intensity pas-
tures.
Fig. S3. BAIPA: Case study BN model of the impact
of the BCA, M. aethiopoides, on NTS, native weevils
in the genus Nicaeana (Curculionidae: Entiminae), in
mid-altitude native tussock grassland.
Fig. S4. Sensitivity tornado plots for the case study
BN of the impact of the BCA, M. aethiopoides, im-
pact on NTS, native weevils in the genus Nicaeana
(Curculionidae: Entiminae), in mid-altitude native
tussock grassland.
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Low grazing intensity pastures 

Fig. S1. “Biocontrol Adverse Impact Probability Assessment” (BAIPA) Bayesian network model: Case study 
of the impact of the biological control agent (BCA), Microctonus aethiopoides, on non-target species (NTS), 
native weevils in the genus Nicaeana (Curculionidae: Entiminae), in low grazing intensity pastures. 
Information on the target species (TS), Sitona discoideus, is included in the model. The numbers in square 
brackets in the model nodes (each individual box) refer to the model components that use those nodes (see 
Fig. 2 and Table I in the manuscript). Key input variables are indicated with an asterisk. A complete 
description of the model structure and definitions of all variables and states are provided in Table S1. 
 
  



a)      b)   
 
Fig. S2.   
Sensitivity tornado plots for the case study Bayesian network of the impact of the biological control agent 
(BCA), Microctonus aethiopoides, on non-target species (NTS), native weevils in the genus Nicaeana 
(Curculionidae: Entiminae), in low grazing intensity pastures. Information on the target species (TS), 
Sitona discoideus, is included in the model. Plots compare the sensitivity of a) the direct impact p(BCA 
direct impact on NTS population = Yes) and b) the encounters p(NTS BCA encounters = Sometimes or 
Always) probabilities to the observations on the key intermediate and input (indicated by asterisk) variables. 
Each plot indicates the range of output probabilities that result when specifying each possible state for each 
individual node. The blue component of each plot shows the reduction in probability achievable and the red 
component shows the increase. 
 
  



 
Native tussock grassland 

Fig. S3. “Biocontrol Adverse Impact Probability Assessment” (BAIPA): Case study Bayesian network model 
of the impact of the biological control agent (BCA), Microctonus aethiopoides, on non-target species (NTS), 
native weevils in the genus Nicaeana (Curculionidae: Entiminae), in mid-altitude native tussock 
grassland. Information on the target species (TS), Sitona discoideus, is included in the model. The 
numbers in square brackets in the model nodes (each individual box) refer to the model components that 
use those nodes (see Fig. 2 and Table I in the manuscript). Key input variables are indicated with an 
asterisk. A complete description of the model structure and definitions of all variables and states are 
provided in Table S1. 
 
 
  



a)     b)   
 
Fig. S4.   
Sensitivity tornado plots for the case study Bayesian network of the impact of the biological control agent 
(BCA), Microctonus aethiopoides, impact on non-target species (NTS), native weevils in the genus 
Nicaeana (Curculionidae: Entiminae), in mid-altitude native tussock grassland. Information on the target 
species (TS), Sitona discoideus, is included in the model. Plots compare the sensitivity of a) the direct 
impact p(BCA direct Impact on NTS population = Yes) and b) the encounters p(NTS BCA encounters = 
Sometimes or Always) probabilities to the observations on the key intermediate and input (indicated by 
asterisk) variables. Each plot indicates the range of output probabilities that result when specifying each 
possible state for each individual node. The blue component of each plot shows the reduction in probability 
achievable and the red component shows the increase. 
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Here we provide an example of the posterior probability calculation for the final Impact node.  

For illustrative purposes, we have reduced the BN to three nodes: the direct, indirect and final 

impact nodes. Note that we have had to create an arc between direct and indirect impacts to 

capture the dependency between them – the direction of the arc is arbitrary, but necessary to 

create a directed acyclic graph.   

 

The posterior belief for BCA Impact can be calculated by summing across the joint probability 

distribution, which can be generated from the BN CPTs via the chain rule: 

𝑝(𝐼𝑚𝑝𝑎𝑐𝑡, 𝐼𝑛𝑑𝑖𝑟𝑒𝑐𝑡, 𝐷𝑖𝑟𝑒𝑐𝑡) = 𝑝(𝐼𝑚𝑝𝑎𝑐𝑡|𝐼𝑛𝑑𝑖𝑟𝑒𝑐𝑡, 𝐷𝑖𝑟𝑒𝑐𝑡)𝑝(𝐼𝑛𝑑𝑖𝑟𝑒𝑐𝑡|𝐷𝑖𝑟𝑒𝑐𝑡)𝑝(𝐷𝑖𝑟𝑒𝑐𝑡) 

Calculating the joint probabilities where Impact = True:  

𝑝(𝑖𝑚𝑝𝑎𝑐𝑡, 𝑑𝑖𝑟𝑒𝑐𝑡, 𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡) = 0.99 ∗ 0.1333 ∗ 0.0565 ≈ 0.0075 

𝑝(𝑖𝑚𝑝𝑎𝑐𝑡, 𝑑𝑖𝑟𝑒𝑐𝑡, ~𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡) = 0.95 ∗ 0.0466 ∗ 0.9485 ≈ 0.0420 

𝑝(𝑖𝑚𝑝𝑎𝑐𝑡, ~𝑑𝑖𝑟𝑒𝑐𝑡, 𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡) = 0.95 ∗ 0.8667 ∗ 0.0565 ≈ 0.0465 

𝑝(𝑖𝑚𝑝𝑎𝑐𝑡, ~𝑑𝑖𝑟𝑒𝑐𝑡, ~𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡) = 0.01 ∗ 0.9534 ∗ 0.9485 ≈ 0.0090 

And summing to get the posterior probability: 

𝑝(𝑖𝑚𝑝𝑎𝑐𝑡) =  𝑝(𝑖𝑚𝑝𝑎𝑐𝑡, 𝑑𝑖𝑟𝑒𝑐𝑡, 𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡) + 𝑝(𝑖𝑚𝑝𝑎𝑐𝑡, 𝑑𝑖𝑟𝑒𝑐𝑡, ~𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡)

+ 𝑝(𝑖𝑚𝑝𝑎𝑐𝑡, ~𝑑𝑖𝑟𝑒𝑐𝑡, 𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡) + 𝑝(𝑖𝑚𝑝𝑎𝑐𝑡, ~𝑑𝑖𝑟𝑒𝑐𝑡, ~𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡) 

≈ 0.0075 + 0.0420 + 0.0465 + 0.0090 = 0.1050 

𝑝(~𝑖𝑚𝑝𝑎𝑐𝑡) = 1 − 𝑝(𝑖𝑚𝑝𝑎𝑐𝑡) 

≈ 1 − 0.1050 = 0.895 
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Table S1. Detailed structure of the nine components in the “Biocontrol Adverse Impact Probability Assessment” (BAIPA) Bayesian 
network model. Input variables are indicated by orange ellipses and with an asterisk. Intermediate variables are indicated by yellow 
ellipses, and the output variable by a green ellipse. Definitions are also provided for all variables and for all states for each variable. In 

the following definitions, the term “biological control agent” (BCA) is defined as a living organism that is intentionally released with the 
expectation that it will multiply and control the target permanently (classical biological control), the term “target species” (TS) as a weed 

or pest of which population is intended to be reduced by the BCA, the term “non-target species” (NTS) as any organism of which 
population is not intended to be reduced by the BCA. BCAs can be predators, parasitoids or pathogens of invertebrate pests, 
herbivores or pathogens of weeds, or micro-organisms antagonistic of plant pathogens or inducing plant resistance. Some NTS could 
be endangered species, species that provide crucial ecosystem services, or economic benefits to the society (they can also be other 
weeds or pests, in which case attack by the BCA would be considered "fortuitous biological control"). Note: This table does not 
provide sufficient information to reconstruct the conditional probability tables for all nodes. However, the Bayesian network models 
described in the paper can be accessed in the original GeNIe format on the ABNMS BN repository (https://www.abnms.org/bnrepo/#). 

  



 

Model Component 1: 

TS/NTS Habitat & Abundance 

 

 

 
 

 
   



TS population in habitat 

Definition Comments 

The size and temporal stability of the TS population 
within the considered habitat.  

Node with unconditional prior probability table 
(input variable). No default prior probability 
distribution. 

 

Input probabilities must be assigned according to 
the expected distribution of abundances across 
all populations of the TS occupying the 
considered habitat in the area of interest to the 
assessor. The considered habitat must be 
defined by the assessor as a type of productive 
or natural environment in which he wants to 
investigate the threat of the BCA to the NTS. It 
can be a type of forest, crop, grassland, or any 
other considered land-uses that can be occupied 
by a breeding population of the NTS.  

Within the area of interest to the assessor, the 
habitat consists of multiple "patches" which vary 
in their characteristics (sizes, shapes, climates, 
etc.), and are likely to be occupied by organism 
populations of various sizes and stabilities. This 
variability is to be reflected in the distribution of 
input probabilities.  

 

S
ta

te
s
 

None The TS is absent. 

Small transient 

The TS occurs in numbers and distribution not 
adequate for the population to use all available habitat 
and resources, or these are extremely fragmented or 
limited. The population is likely to be affected by 
environmental stressors resulting in a population with 
greatly reduced abundance and occupancy. The 
population is restricted to isolated pockets or may 
undergo temporary disappearances. 

Small persistent 

The TS occurs in numbers and distribution adequate for 
the population to use available habitat and resources, 
but these are not continuous and limited. The 
population can locally be affected by environmental 
stressors leading to declines in abundance or 
occupancy. 

Large 

The TS occurs in numbers and distribution robust 
enough for the population to use available habitat and 
resources, which are abundant. The population can 
fully withstand environmental stressors without 
significant declines in abundance or distribution. 

Model component(s) 1. TS/NTS Habitat and abundance (input variable) 

4. BCA Habitat & Abundance 

  



NTS population in habitat 

Definition Comments 

The size and temporal stability of the NTS 
population within the considered habitat.  

Node with unconditional prior probability table 
(input variable). No default prior probability 
distribution. 

 

Input probabilities must be assigned according to 
the expected distribution of abundances across 
all populations of the NTS occupying the 
considered habitat in the area of interest to the 
assessor. The considered habitat must be 
defined by the assessor as a type of productive 
or natural environment in which he wants to 
investigate the threat of the BCA to the NTS. It 
can be a type of forest, crop, grassland, or any 
other considered land-uses that can be occupied 
by a breeding population of the NTS.  

Within the area of interest to the assessor, the 
habitat consists of multiple "patches" which vary 
in their characteristics (sizes, shapes, climates, 
etc.), and are likely to be occupied by organism 
populations of various sizes and stabilities. This 
variability is to be reflected in the distribution of 
input probabilities.  

S
ta

te
s
 

Small transient 

The NTS occurs in numbers and distribution not 
adequate for the population to use all available habitat 
and resources, or these are extremely fragmented or 
limited. The population is likely to be affected by 
environmental stressors resulting in a population with 
greatly reduced abundance and occupancy. The 
population is restricted to isolated pockets or may 
undergo temporary disappearances. 

Small persistent 

The NTS occurs in numbers and distribution adequate 
for the population to use available habitat and 
resources, but these are not continuous and limited. 
The population can locally be affected by environmental 
stressors leading to declines in abundance or 
occupancy. 

Large 

The NTS occurs in numbers and distribution robust 
enough for the population to use available habitat and 
resources, which are abundant. The population can 
fully withstand environmental stressors without 
significant declines in abundance or distribution. 

Model component(s) 1. TS/NTS Habitat and abundance (input variable) 

4. BCA Habitat & Abundance 

 
 

  



TS/NTS habitat spatial 
proximity 

Definition Comments 

The spatial proximity between the considered 
habitat (occupied by the NTS) and the habitat 
occupied by the TS.  

Node with unconditional prior probability table 
(input variable). Default prior probability 
distribution: 100% shared 

 

The considered habitat can be a type of forest, 
crop, grassland, or any other considered land-
uses that can be occupied by a breeding 
population of the NTS.  

In the case of a non-shared habitat, the 
expected distribution between distant and 
nearby can be based on inspection of land cover 
maps. When a TS occupies a wide range of 
habitats, the "nearby" state will be favoured. 
When a TS occupies a small range of habitats, 
the "distant" state will be favoured. 

 

S
ta

te
s
 

Shared The considered habitat is also a habitat for the TS. 

Nearby 

The considered habitat is within the dispersal range of 
the BCA. Distances <10km between the considered 
habitat and the nearest TS habitat (assumed to be also 
occupied by the BCA) are compatible with typical active 
and passive dispersal distances for insects.  

Distant 

The considered habitat is not within the dispersal range 
of the BCA. Distances >10km between the considered 
habitat and the nearest TS habitat (assumed to be also 
occupied by the BCA) are not compatible with typical 
active dispersal distances for insects. Important dilution 
effects are also to be expected for insects dispersing 
passively over distances >10 km. 

 

Model component(s) 
1. TS/NTS Habitat and abundance (input variable) 

4. BCA Habitat & Abundance 

 
 
 

  



TS/NTS population ratio 
in habitat 

Definition Comments 

The abundance ratio comparing the population 
levels of the TS and the NTS in the considered 
habitat. 

Node with conditional prior probability table. 
Integration of the parent nodes: “TS population 
in habitat” and “NTS population in habitat”. 

 

These parent nodes are equally weighted.A 
population rated as "large" is always considered 
more abundant than a population rated as "small 
transient" (with a 100% probability). A population 
rated as "small persistent" is generally 
considered more abundant than a population 
rated as "small transient" (90% probability). A 
population rated as "large" is generally 
considered more abundant than a population 
rated as "small persistent (90% probability). Two 
populations rated the same ("small transient", 
"small persistent" or "large" are generally 
considered balanced (90% probability). 
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More TS 
The TS is more abundant than the NTS in the 
considered habitat. 

Balanced 
The TS is about equally as abundant as the NTS in the 
considered habitat. 

More NTS 

The NTS is more abundant than the TS in the 
considered habitat. 

Model component 
1. TS/NTS Habitat and abundance (intermediate variable) 

3. Short & Medium-range Attraction 

 
  



Model Component 2: 

BCA Long-distance Dispersal 

 

  



BCA long-distance 
passive dispersal 

Definition Comments 

The frequency at which BCAs disperse outside their 
habitat of introduction by means other than active, 
directed movement. 

Node with unconditional prior probability table 
(input variable). Default prior probability 
distribution for parasitoid-host systems: 30% 
None, 40% Seldom, 30% Frequent. 

The habitat of introduction of the BCA can be a 
type of forest, crop, grassland, or any other land 
uses occupied by a population of the TS. Within 
the area of interest to the assessor, the habitat 
consists of multiple "patches" which vary in their 
characteristics (sizes, shapes, climates, etc.) 
and proximity to other habitat types. These 
characteristics are likely to affect the dispersal of 
BCA individuals to other habitats, and this is to 
be reflected in the distribution of input 
probabilities. 

Examples of long-distance passive dispersal 
include insects blown in high elevation air 
currents, transported as immature stages via 
birds or other insects (e.g. mites on moths), or 
moved by vehicles or other human activities 
(including via transport of plant material). 
Immature stages of parasitoids can also be 
vectored by their hosts as such parasitised hosts 
can still perform dispersal or migration flights. 
Insects typically disperse greater distances when 
they are passively transported, but also 
experience high dilution rates and mortalities. 
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None 

A negligible proportion of BCA individuals (<1 in a 
million) disperse passively out of their habitat of 
introduction, by means of air or water currents or 
vectors, to another habitat.  

Seldom 

A small proportion of BCA individuals (1 in a million to 1 
in a hundred) disperse passively out of their habitat of 
introduction, by means of air or water currents or 
vectors, to another habitat. 

Frequent 

A relatively high proportion of BCA individuals (>1 in a 
hundred) disperse passively out of their habitat of 
introduction, by means of air or water currents or 
vectors, to another habitat. 

Model component(s) 2. BCA Long-distance Dispersal (input variable) 

 
  



BCA long-distance active 
dispersal 

Definition Comments 

The frequency at which BCAs disperse outside their 
habitat of introduction by use of active, directed 
movement. 

Node with unconditional prior probability table 
(input variable). Default prior probability 
distribution for parasitoid-host systems: 50% 
None, 30% Seldom, 20% Frequent. 

 

The habitat of introduction of the BCA can be a 
type of forest, crop, grassland, or any other land 
uses occupied by a population of the TS. Within 
the area of interest to the assessor, the habitat 
consists of multiple "patches" which vary in their 
characteristics (sizes, shapes, climates, etc.) 
and proximity to other habitat types. These 
characteristics are likely to affect the dispersal of 
BCA individuals to other habitats, and this is to 
be reflected in the distribution of input 
probabilities. 

 

S
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None 
A negligible proportion of BCA individuals (<1 in a 
million) disperse actively out of their habitat of 
introduction by means of walking or flying. 

Seldom 
A small proportion of BCA individuals (1 in a million to 1 
in a hundred) disperse actively out of their habitat of 
introduction by means of walking or flying. 

Frequent 

A relatively high proportion of BCA individuals (>1 in a 
hundred) disperse actively out their habitat of 
introduction by means of walking or flying. 

Model component 2. BCA Long-distance Dispersal (input variable) 

 
  



BCA long-distance 
dispersal 

Definition Comments 

The frequency at which BCAs disperse outside the 
habitat of introduction and have the potential to 
establish a viable population in the new habitat. 

Node with conditional prior probability table. 
Integration of the parent nodes: “BCA long-
distance active dispersal” and “BCA long-
distance passive dispersal”. 

These parent nodes are unequally weighted to 
account for a higher probability of actively 
dispersing BCAs to establish a new viable 
population in a new habitat. For instance, BCA 
characterised by “Frequent” long-distance active 
dispersal but no ability for long-distance passive 
dispersal will be rated equally (each with a 50% 
probability) for “Frequent” and “Seldom” for the 
likelihood of long-distance dispersal. Conversely, 
BCAs characterised by “Frequent” long-distance 
passive dispersal but no ability for long-distance 
active dispersal will be rated with a 40% 
probability for “Frequent” and with a 60% 
probability for “Seldom”, for the likelihood of 
long-distance dispersal.  
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None 
A negligible proportion of BCA individuals disperse out 
of their habitat of introduction and establish a viable 
population in the new habitat.  

Seldom 
A small proportion of BCA individuals disperse out of 
their habitat of introduction and establish a viable 
population in the new habitat. 

Frequent 

A relatively high proportion of BCA individuals disperse 
out of their habitat of introduction and establish a viable 
population in the new habitat. 

Model component(s) 
2. BCA Long-distance Dispersal (intermediate variable) 

4. BCA Habitat and abundance 

 
  



Model Component 3: 

Short & Medium-range Attraction 

 

 

Note. The variable with a double border has been defined in Model Component 1. 

  



BCA directly attracted to 
NTS (medium-distance) 

Definition Comments 

BCAs are directly attracted at medium-distance to 
individuals of the NTS within the considered 
habitat. 

Node with unconditional prior probability table 
(input variable). Default prior probability 
distribution for parasitoid-host systems: 75% 
never, 20% not preferentially, 5% preferentially. 

 

Cues perceived by a BCA to locate a NTS can 
be visual (e.g. seeing the NTS), chemical (e.g., 
perceiving odours emitted by the NTS, or for 
insect NTS host plant volatiles associated with 
their feeding activity), or aural (e.g. perceiving 
noises emitted by the NTS). 

When possible, input probabilities must be 
assigned based on experimental testing of the 
attraction behaviour of the BCA in presence of 
the NTS (in the laboratory or in the field). It is 
recommended that these tests standardise 
factors such as host age, mating and feeding 
history, and include the TS as a positive control 
to confirm that the experimental protocol is 
appropriate. 

When incomplete information is available on the 
impact of the BCA on the NTS, information can 
be obtained from close relatives (e.g. NTS in the 
same subfamily). The estimation of input 
probabilities obtained from such surrogate 
species must reflect additional uncertainty, 
notably by considering morphological and 
ecological differences between species. 
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Never 
At medium range (1-100m), the BCA does not have an 
ability to locate NTS individuals and move directly 
towards them.  

Not preferentially 

At medium range (1-100m), the BCA has an ability to 
locate NTS individuals and move directly towards them. 
The BCA exhibits a stronger response to the TS than 
the NTS. 

Preferentially 

At medium range (1-100m), the BCA has an ability to 
locate NTS individuals and move directly towards them. 
The BCA exhibits a stronger response in the presence 
of the NTS as opposed to the TS. 

Model component 3. Short & Medium-range Attraction (input variable) 

 
  



BCA indirectly attracted 
to NTS (medium-distance) 

Definition Comments 

BCAs are not attracted at medium-distance to 
individuals of the NTS, but to other organisms and 
certain microhabitats associated with the NTS in 
the considered habitat. 

Node with unconditional prior probability table 
(input variable). Default prior probability 
distribution for parasitoid-host systems: 50% no, 
50% yes. 

 

Cues perceived by a BCA to locate organisms 
and microhabitats associated with the NTS can 
be visual (e.g. seeing a host plant, or an insect 
host or prey), chemical (e.g., perceiving odours 
emitted by a host plant, or an insect host or prey, 
or the plant on which an insect host or prey is 
living), or aural (e.g. perceiving a noise emitted 
by an insect host or prey). 

When possible, input probabilities must be 
assigned based on experimental testing of the 
behaviour of the BCA in presence of organisms 
and microhabitats associated with the NTS (in 
the laboratory or in the field). It is recommended 
that these tests include the TS as a positive 
control to confirm that the experimental protocol 
is appropriate. 

When incomplete information is available on the 
impact of the BCA on the NTS, information can 
be obtained from close relatives (e.g. NTS in the 
same subfamily). The estimation of input 
probabilities obtained from such surrogate 
species must reflect additional uncertainty, 
notably by considering morphological and 
ecological differences between species. 
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No 
At medium range (1-100m), the BCA does not tend to 
move towards plants where NTS individuals could be 
present.  

Yes 

At medium range (1-100m), the BCA does tend to move 
towards plants where NTS individuals could be present.  

Model component 3. Short & Medium-range Attraction (input variable) 

 



  



BCA directly attracted to 
NTS (short-distance) 

Definition Comments 

BCAs are directly attracted at short-distance to 
individuals of the NTS within the considered 
habitat. 

Node with unconditional prior probability table 
(input variable). Default prior probability 
distribution for parasitoid-host systems: 5% 
never, 90% not preferentially, 5% preferentially. 

 

Cues perceived by a BCA to locate a NTS can 
be visual (e.g. seeing the NTS), chemical (e.g., 
perceiving odours emitted by the NTS, or for 
insect NTS host plant volatiles associated with 
their feeding activity), or aural (e.g. perceiving 
noises emitted by the NTS). 

When possible, input probabilities must be 
assigned based on experimental testing of the 
attraction behaviour of the BCA in presence of 
the NTS (in the laboratory or in the field). It is 
recommended that these tests standardise 
factors such as host age, mating and feeding 
history, and include the TS as a positive control 
to confirm that the experimental protocol is 
appropriate. 

When incomplete information is available on the 
impact of the BCA on the NTS, information can 
be obtained from close relatives (e.g. NTS in the 
same subfamily). The estimation of input 
probabilities obtained from such surrogate 
species must reflect additional uncertainty, 
notably by considering morphological and 
ecological differences between species. 
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Never 
At short range (<1m), the BCA does not have an ability 
to locate NTS individuals and move towards them.  

Not preferentially 

At short range (<1m), the BCA has an ability to locate 
NTS individuals and move towards them. The BCA 
exhibits a stronger response in the presence of the TS 
as opposed to the NTS. 

Preferentially 

At short range (<1m), the BCA has an ability to locate 
NTS individuals and move towards them. The BCA 
exhibits a stronger response in presence of the NTS as 
opposed to the TS. 

Model component 3. Short & Medium-range Attraction (input variable) 

 
  



BCA indirectly attracted 
to NTS (short-distance) 

Definition Comments 

BCAs are indirectly attracted at short-distance to 
individuals of the NTS within the considered 
habitat. 

Node with unconditional prior probability table 
(input variable). Default prior probability 
distribution for parasitoid-host systems: 50% no, 
50% yes. 

 

Cues perceived by a BCA to locate organisms 
and microhabitats associated with the NTS can 
be visual (e.g. seeing a host plant, or an insect 
host or prey), chemical (e.g., perceiving odours 
emitted by a host plant, or an insect host or prey, 
or the plant on which an insect host or prey is 
living), or aural (e.g. perceiving a noise emitted 
by an insect host or prey). 

When possible, input probabilities must be 
assigned based on experimental testing of the 
behaviour of the BCA in presence of organisms 
and microhabitats associated with the NTS (in 
the laboratory or in the field). It is recommended 
that these tests include the TS as a positive 
control to confirm that the experimental protocol 
is appropriate. 

When incomplete information is available on the 
impact of the BCA on the NTS, information can 
be obtained from close relatives (e.g. NTS in the 
same subfamily). The estimation of input 
probabilities obtained from such surrogate 
species must reflect additional uncertainty, 
notably by considering morphological and 
ecological differences between species. 
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No 
At short range (<1m), the BCA does not tend to move 
towards microhabitats where NTS individuals could be 
present.  

Yes 

At short range (<1m), the BCA does tend to move 
towards microhabitats where NTS individuals could be 
present.  

Model component 3. Short & Medium-range Attraction (input variable) 

 



  



BCA attracted to NTS 
(medium-distance) 

Definition Comments 

BCAs are attracted at medium-distance to 
individuals of the NTS within the considered 
habitat. 

Node with conditional prior probability table. 
Integration of the parent nodes: “BCA directly 
attracted to NTS (medium-distance)”, “BCA 
indirectly attracted to NTS (medium-distance)” 
and “TS/NTS population ratio in habitat”. 

These parent nodes are unequally weighted. For 
balanced populations of the TS and the NTS, the 
probability of a non-preferential medium-
distance direct attraction to the NTS is rated as 
50% in the absence of an indirect attraction 
mechanism, and 90% if a mechanism is present. 
The probability of a preferential direct attraction 
is rated as 90% in the absence of an indirect 
attraction mechanism, and 99% if a mechanism 
is present. 

These ratings are altered when the TS and NTS 
populations are unbalanced. For instance, in the 
absence of an indirect attraction mechanism, the 
50% probability of a non-preferential attraction to 
the NTS is reduced to 10% if the TS is more 
abundant, or increased to 90% if the NTS is 
more abundant. 

S
ta

te
s
 

No 
At medium range (1-100m), the BCA does not move 
towards NTS individuals.  

Yes 

At medium range (1-100m), the BCA does move 
towards NTS individuals. 

Model component 3. Short & Medium-range Attraction (intermediate variable) 

 
  



BCA attracted to NTS 
(short-distance) 

Definition Comments 

BCAs are attracted at short-distance to individuals 
of the NTS within the considered habitat. 

Node with conditional prior probability table. 
Integration of the parent nodes: “BCA directly 
attracted to NTS (short-distance)” and “BCA 
indirectly attracted to NTS (short-distance)”. 

 

These parent nodes are unequally weighted. For 
balanced populations of the TS and NTS, the 
probability of a non-preferential short-distance 
direct attraction to the NTS is rated as 50% in 
the absence of indirect attraction mechanism, 
and 70% if the mechanism is present. The 
probability of a preferential direct attraction is 
rated as 90% in the absence of an indirect 
attraction mechanism, and 99% if the 
mechanism is present. 
These ratings are altered in the presence of 
unbalanced populations of the two species. For 
instance, in the absence of an indirect attraction 
mechanism, the 50% probability of a non-
preferential attraction to the NTS is reduced to 
10% if the TS is more abundant, or increased to 
90% if the NTS is more abundant. 
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No 
At short range (<1m), the BCA does not move towards 
NTS individuals.  

Yes 

At short range (<1m), the BCA does move towards NTS 
individuals. 

Model component 3. Short & Medium-range Attraction (intermediate variable) 

 
  



BCA attracted to NTS 

Definition Comments 

BCAs are attracted to individuals of the NTS within 
the considered habitat. 

Node with conditional prior probability table. 
Integration of the parent nodes: “BCA attracted 
to NTS (medium-distance)” and “BCA attracted 
to NTS (short-distance)”. 

These parent nodes are equally weighted. The 
probability of attraction to the NTS is very low 
(1%) in the absence of short and medium-range 
attraction. Conversely, the probability is very 
high (99%) in the presence of short and 
medium-range attraction. BCA with only short, or 
only medium-range attraction to the NTS rate as 
an overall low probability (10%).  
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No The BCA does not move towards NTS individuals.  

Yes 

The BCA does move towards NTS individuals. 

Model component 
3. Short & Medium-range Attraction (intermediate variable) 

6. NTS-BCA Encounters  

 
  



 
 

Model Component 4: 

BCA Habitat & Abundance 

 

 

Note. The variables with a double border have been defined in Model Component 1. 

 



 
  

BCA spread in habitat 

Definition Comments 

The potential for the BCA, on a long-term horizon, to spread 
in the habitat occupied by the NTS. 

Node with conditional prior probability 
table. Integration of the parent nodes: 
“BCA long-distance dispersal” and 
“TS/NTS habitat spatial proximity”. 

These parent nodes are unequally 
weighted. The BCA is assumed present 
in all habitats occupied by the TS, 
including in habitats shared by the TS 
and the NTS.  

When the BCA has no capability for 
long-distance dispersal, the potential for 
the BCA to spread to NTS habitats 
distant from target habitats is rated low 
with a 90% probability. For nearby NTS 
habitats, the BCA has medium (with a 
50% probability) or high potential (with a 
40% probability) for spread. The BCA is 
rated with a higher probability of spread 
when it has a capability for long-
distance dispersal. For a BCA with 
“Frequent” long-distance dispersal for 
instance, spread to distant habitats is 
rated medium (with a 60% probability) 
or high potential (with a 30% 
probability), and spread to nearby 
habitats has high potential (100% 
probability). 
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Low potential 
The TS is not present in the habitat, and the habitat is out of 
reach of the BCA given its current dispersal capabilities, even on 
a long-term horizon (10+ years). 

Medium potential 
The TS is not present in the habitat, but the habitat is within 
reach of the BCA on a long-term horizon, given its current 
dispersal capability. 

High potential or 
present 

The TS is either present in the habitat, in which case the BCA is 
assumed to eventually spread in this habitat, or the habitat is 
within reach of the BCA given its current dispersal capability. 

Model component(s) 4. BCA Habitat & Abundance (intermediate variable) 



BCA potential 
establishment in NTS 

habitat 

Definition Comments 

The potential for the BCA, given the local food resources, to 
establish in the habitat considered. 

Node with conditional prior probability 
table. Integration of the parent nodes: 
“TS population in NTS habitat”, “NTS 
population in NTS habitat”. 

These parent nodes are unequally 
weighted. The BCA is assumed present 
in all habitats with a transient or 
persistent population of the TS. 
Conversely, the model does not 
assume that a population of the BCA, 
even transient, can breed in habitats 
occupied by the NTS alone. 

When the TS is absent, there is always 
a 50% probability for absence of the 
BCA, and a 50% probability for 
presence (either small transient, small 
persistent, or large, aligned with the 
population of the NTS). When the TS 
population is small, there is usually a 
100% probability for a small BCA 
population (either 50% small transient, 
50% small persistent, or 100% for one 
of these two states). Except with a large 
NTS population, in which case the size 
of the BCA population is more uncertain 
(rated with a 50% probability for small 
and 50% for large). When the TS 
population is large, there is a 100% 
probability for a large BCA population. 
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None 
The BCA does not have the potential to establish a local 
population given the absence of the TS and NTS. 

Small transient 

The BCA has the potential to establish a local population given 
the local presence of the TS and/or the NTS. These hosts are in 
numbers and distribution not adequate for the BCA population, 
which is likely to be affected by environmental stressors 
resulting in a population with greatly reduced abundance and 
occupancy. 

Small persistent 

The BCA has the potential to establish a local population given 
the local presence of the TS and/or the NTS. These hosts are in 
limited numbers and distribution, and the BCA population can 
locally be affected by environmental stressors leading to 
declines in abundance or occupancy. 

Large 

The BCA has the potential to establish a local population given 
the local presence of the TS and/or the NTS. These hosts are 
abundant, and the BCA population can fully withstand 
environmental stressors without significant declines in 
abundance or distribution. 

Model component(s) 4. BCA Habitat & Abundance (intermediate variable) 

 
   



BCA population in habitat 

Definition Comments 

The size and temporal stability of the BCA population within 
the considered habitat.  

Node with conditional prior probability 
table. Integration of the parent nodes: 
“BCA spread in NTS habitat” and “BCA 
potential establishment in NTS habitat”. 

These parent nodes are unequally 
weighted. The distribution of predictions 
for the BCA population is primarily 
governed by the distribution of states 
from the BCA potential establishment. 
When the potential for establishment is 
rated as “None”, there is a 100% 
probability for absence of a BCA 
population in the habitat.  

The BCA is also unlikely to be present 
when the spread of the BCA is rated 
“Low potential” (with a 5 to 10% 
presence probability), or “Medium 
potential” (with a 20 to 30% presence 
probability). Conversely, the BCA is 
more likely to be present when its 
spread is rated “High potential or 
present” (with a 70 to 90% presence 
probability). For possible BCA 
populations, the ranking for the size and 
stability of the population is the same 
estimate as for potential establishment. 
For instance, a BCA with “High 
potential” for spread and a “Small 
transient” potential for establishment will 
be rated a 70% probability to establish a 
small transient population (and a 30% 
probability not to establish).   
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None The BCA is absent. 

Small transient 

The BCA occurs in numbers and distribution not adequate for 
the population to use all available habitat and resources, or 
these are extremely fragmented or limited. The BCA population 
is likely to be affected by environmental stressors and 
fluctuations in abundance of hosts, resulting in a population with 
greatly reduced abundance and occupancy. The population is 
restricted to isolated pockets or temporary disappearances. 

Small persistent 

The BCA occurs in numbers and distribution adequate for the 
population to use available habitat and resources, but these are 
not continuous and limited. The population can locally be 
affected by environmental stressors and fluctuations in 
abundance of hosts, leading to declines in abundance or 
occupancy. 

Large 

The BCA occurs in numbers and distribution robust enough for 
the population to use available habitat and resources, which are 
abundant. The population can fully withstand environmental 
stressors and fluctuations in abundance of hosts, without 
significant declines in abundance or distribution. 



Model component(s) 

4. BCA Habitat & Abundance (intermediate variable) 

6. NTS-BCA Encounters  

8. indirect Impacts  

    



 

Model Component 5: 

Temporal Window 

 

 

  



NTS/BCA seasonal match 

Definition Comments 

The overlap between the seasonal appearance of the 
susceptible life stage of the NTS and the attacking life stage 
of the BCA. 

Node with unconditional prior probability 
table (input variable). Default prior 
probability distribution for parasitoid-
host systems: 10% None, 50% Partial, 
40% Complete. 

The seasonal appearance of the 
susceptible life stage of the NTS, and of 
the appearance of the attacking life 
stage of the BCA, must be evaluated in 
the habitat considered by the assessor. 
The phenology of both species must be 
considered, as well as periods of time 
when the NTS is possibly sheltered 
from the BCA (e.g. underground) or not 
attractive (e.g. resting stage). Migratory 
processes must also be considered. 

A dedicated companion BN has been 
designed to facilitate the estimation of 
this variable, taking into account the 
seasons of observations of the NTS and 
the BCA (for instance from databases 
or collections). 
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None 
The attacking life stage of the BCA is present and active at a 
completely different period of the year than the period of activity 
of the susceptible life stage(s) of the NTS. 

Partial 
The attacking life stage of the BCA is present and active during 
a period of the year that partially overlaps with the period of 
activity of the susceptible life stage(s) of the NTS. 

Complete 

The attacking life stage of the BCA is present and active during 
a period of the year that includes the full period of activity of the 
susceptible life stage(s) of the NTS. 

Model component(s) 5. Temporal Window (input variable) 

 
  



Reproductive phenology 
of the BCA 

Definition Comments 

The reproductive activity of the BCA during the period of 
seasonal appearance of the attacking life stage of the BCA 
and the susceptible life stage of the NTS. 

Node with unconditional prior probability 
table (input variable). Default prior 
probability distribution for parasitoid-
host systems: 30% Low, 40% 
Moderate, 30% High. 

A low reproductive potential can be 
considered for a BCA with 1 or 2 
generations per year and a potential 
fecundity below 30 progeny per female. 
A moderate reproductive potential can 
be considered for a BCA with 1 or 2 
generations per year and a potential 
fecundity above 30 progeny per female, 
or at least 3 generations per year but a 
potential fecundity below 30 progeny 
per female. A high reproductive 
potential can be considered for a BCA 
with at least 3 generations per year and 
a potential fecundity above 30 progeny 
per female. 
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Low 

The attacking life stage of the BCA is only active for a fraction of 
the time that the susceptible life stages of the NTS are present 
in the habitat. The BCA is characterised by a low reproductive 
potential. Encounters between the attacking life stage of the 
BCA and the susceptible life stage of the NTS can be restricted 
by an inadequate match of their daily cycles of activity. 

Moderate 

The attacking life stage of the BCA is active for most of the time 
that the susceptible life stages of the NTS are present in the 
habitat. The BCA is characterised by a moderate reproductive 
potential. Encounters between the attacking life stage of the 
BCA and the susceptible life stage of the NTS are not restricted 
by an inadequate match of their daily cycles of activity. 

High 

The attacking life stage of the BCA is active for most of the time 
that the susceptible life stages of the NTS are present in the 
habitat. The BCA is characterised by a high reproductive 
potential. Encounters between the attacking life stage of the 
BCA and the susceptible life stage of the NTS are not restricted 
by an inadequate match of their daily cycles of activity. 

Model component(s) 5. Temporal Window (input variable) 

 
  



NTS/BCA temporal match 
for encounters 

Definition Comments 

The overlap between the period of presence of susceptible 
NTS individuals and the period of activity of attacking 
individuals of the BCA. 

Node with conditional prior probability 
table. Integration of the parent nodes: 
“NTS/BCA seasonal match” and 
“Reproductive phenology of the BCA”. 

These parent nodes are unequally 
weighted. The distribution of predictions 
for the NTS/BCA temporal match for 
encounters is primarily governed by the 
distribution of states from their seasonal 
match. When the seasonal match is 
rated as “None”, there is a 100% 
probability for no temporal match for 
encounters.  

A “Partial” seasonal match yields at 
best a “Partial” temporal match for 
encounters, with 40%, 70%, and 90% 
probability associated with “Low”, 
“Moderate” or “High” reproductive rates, 
respectively (otherwise no match). A 
“Complete” seasonal match yields at 
best a “Full” temporal match for 
encounters, with 10%, 70%, and 80% 
probability associated with “Low”, 
“Moderate” or “High” reproductive rates, 
respectively (otherwise a partial match 
or no match).      
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None 
Susceptible individuals in the NTS population will not be present 
when attacking individuals the BCA population are likely to be 
present. 

Partial 

Only a portion of the susceptible individuals in the NTS 
population will be present at the time attacking individuals the 
BCA population are likely to be present. 

 

Complete 

All the susceptible individuals in the NTS population will be 
present at the time attacking individuals the BCA population are 
likely to be present. 

Model component(s) 
5. Temporal Window (intermediate variable) 

6. NTS-BCA Encounters 

 
  



 

Model Component 6: 

NTS-BCA Encounters 

 

Note. The variables with a double border have been defined in Model Components 1,3, 4 and 5. 

  



NTS BCA encounters 
potential 

Definition Comments 

The frequency at which susceptible NTS individuals may be 
exposed to attacking BCA individuals if there was no 
temporal constraint for encounters. 

Node with conditional prior probability 
table. Integration of the parent nodes: 
“BCA population in NTS habitat”, “NTS 
population in NTS habitat”, and “BCA 
attracted to NTS in NTS habitat”. 

These parent nodes are unequally 
weighted. No encounters can occur in 
absence of the BCA, and these are 
rated “Never”.  

For small populations of the NTS, 
encounters are primarily driven by the 
size of the BCA population and whether 
the BCA is attracted to the NTS. When 
the BCA is not attracted to the NTS, the 
most probable states are “Never” for 
small transient populations of the BCA 
(75-95%), and “Sometimes” for small 
persistent populations of the BCA (70-
75%). When the BCA is attracted to the 
NTS, the most probable states are 
“Sometimes” or “Always” for small 
transient populations of the BCA (95% 
for these two states combined), and 
“Always” for small persistent of the BCA 
populations (60-80%). 

For large populations of the NTS, when 
the BCA is not attracted to the NTS the 
most probable states is “Sometimes” in 
presence of small populations of the 
BCA (80-89%), and “Always” when both 
populations are large (70%). When the 
BCA is attracted to the NTS, the most 
probable states is “Sometimes” or 

S
ta

te
s
 

Never 
Less than 20% of susceptible individuals in the NTS population 
would be exposed to attacking individuals of the BCA if there 
was no temporal constraint. 

Sometimes 
Between 20% and 80% of susceptible individuals in the NTS 
population would be exposed to attacking individuals of the BCA 
if there was no temporal constraint. 

Always 

More than 80% of susceptible individuals in the NTS population 
would be exposed to attacking individuals of the BCA if there 
was no temporal constraint. 



“Always” in presence of small 
populations of the BCA (89-95% for 
these two states combined), and 
“Always” when both populations are 
large (90%). 

Model component(s) 6. NTS-BCA Encounters (intermediate variable) 

 

NTS BCA encounters  

Definition Comments 

The frequency at which susceptible NTS individuals are 
exposed to the attacking life stage of the BCA in the habitat. 

Node with conditional prior probability 
table. Integration of the parent nodes: 
“NTS/BCA temporal match for 
encounters” and “NTS BCA encounters 
potential”. 

These parent nodes are unequally 
weighted. The distribution of predictions 
for the NTS BCA encounters is primarily 
governed by the distribution of states 
from their encounters potential. When 
the encounters potential is rated as 
“Never”, or when there is the temporal 
match is rated as “None”, there is a 
100% probability for no encounters.  

An encounters potential rated as 
“Sometimes” associates a higher 
probability of “Sometimes” for 
encounters (50% with partial temporal 
match, or 80% with full temporal 
match). An encounters potential rated 
as “Always” associates a higher 
probability of “Sometimes” and “Always” 
for encounters (50% and 20, 
respectively, with partial temporal 

S
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Never 
Less than 20% of susceptible individuals in the NTS population 
are exposed to attacking individuals of the BCA. 

Sometimes 
Between 20% and 80% of susceptible individuals in the NTS 
population are exposed to attacking individuals of the BCA. 

Always 

More than 80% of susceptible individuals in the NTS population 
are exposed to attacking individuals of the BCA. 



match, or 40% “and 50% “Always”, 
respectively, with full temporal match). 

Model component(s) 
6. NTS-BCA Encounters (intermediate variable) 

7. Direct impacts 

 
 

  



Model Component 7: 

Direct impacts 

 

Note. The variable with a double border has been defined in Model Component 6. 

  



BCA attacks NTS when 
encounters  

Definition Comments 

The frequency at which a susceptible NTS individual is 
attacked in a situation of exposure to the attacking life 
stage of the BCA. 

Node with unconditional prior probability 
table (input variable). Default prior 
probability distribution for parasitoid-
host systems: 33% Never, 34% 
Sometimes, 33% Always. 

When possible, input probabilities must 
be assigned based on experimental 
testing of the behaviour of the BCA in 
presence of the NTS. For instance, 
starvation and oviposition tests on 
plants for herbivore insects, oviposition 
tests towards hosts for parasitoids, 
predation tests towards prey for 
predators. It is recommended that these 
tests standardise factors such as host 
age, mating and feeding history, and 
include the TS as a positive control to 
confirm that the experimental protocol is 
appropriate. This information can be 
summarised from laboratory choice and 
non-choice tests. 

When incomplete information is 
available on the attacking behaviour of 
the BCA towards the NTS, information 
can be obtained from close relatives 
(e.g. NTS in the same subfamily). The 
estimation of input probabilities 
obtained from such surrogate species 
must reflect additional uncertainty, 
notably by considering morphological 
and ecological differences between 
species.  

S
ta
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Never 
In a situation of close contact exposure (<10 cm), less than 20% 
of susceptible NTS individuals are attacked by the attacking life 
stage of the BCA. 

Sometimes 
In a situation of close contact exposure (<10 cm), between 20% 
and 80% of susceptible individuals in the NTS population are 
attacked by the attacking stage of the BCA. 

Always 

In a situation of close contact exposure (<10 cm), more than 
80% of susceptible individuals in the NTS population are 
attacked by the attacking stage of the BCA. 



Model component(s) 7. Direct impacts (input variable) 

 
  



NTS mortality after 
successful attack 

Definition Comments 

The frequency at which an NTS individual attacked by the 
BCA dies before it can reproduce. 

Node with unconditional prior probability 
table (input variable). Default prior 
probability distribution for parasitoid-
host systems: 33% Never, 34% 
Sometimes, 33% Always. 

When possible, input probabilities must 
be assigned based on experimental 
testing of the behaviour of the BCA in 
presence of the NTS. For instance, 
laboratory or field studies on BCA 
attacks and impact on NTS plants for 
herbivore insects, on NTS insect hosts 
for parasitoids, on NTS prey for 
predators. It is recommended that these 
tests standardise factors such as host 
age, mating and feeding history, and 
include the TS as a positive control to 
confirm that the experimental protocol is 
appropriate. 

When incomplete information is 
available on the impact of the BCA on 
the NTS, information can be obtained 
from close relatives (e.g. NTS in the 
same subfamily). The estimation of 
input probabilities obtained from such 
surrogate species must reflect 
additional uncertainty, notably by 
considering morphological and 
ecological differences between species.  

S
ta

te
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Never 
Less than 20% of NTS individuals die before they can reproduce 
as the result of an attack by the BCA. 

Sometimes 
Between 20% and 80% of NTS individuals die before they can 
reproduce as the result of an attack by the BCA. 

Always 

More than 80% of NTS individuals die before they can 
reproduce as the result of an attack by the BCA. 

Model component(s) 7. Direct impacts (input variable) 

 
  



NTS non-lethal fitness 
impact after attack 

Definition Comments 

The frequency at which a NTS individual attacked by the 
BCA survives the attack and reproduces, but has reduced 
reproductive potential.  

Node with unconditional prior probability 
table (input variable). Default prior 
probability distribution for parasitoid-
host systems: 33% Never, 34% 
Sometimes, 33% Always. 

When possible, input probabilities must 
be assigned based on experimental 
testing of the behaviour of the BCA in 
presence of the NTS. For instance, 
laboratory or field studies on BCA 
attacks and impact on NTS plants for 
herbivore insects, on NTS insect hosts 
for parasitoids, on NTS prey for 
predators. It is recommended that these 
tests standardise factors such as host 
age, mating and feeding history, and 
include the TS as a positive control to 
confirm that the experimental protocol is 
appropriate. 

When incomplete information is 
available on the impact of the BCA on 
the NTS, information can be obtained 
from close relatives (e.g. NTS in the 
same subfamily). The estimation of 
input probabilities obtained from such 
surrogate species must reflect 
additional uncertainty, notably by 
considering morphological and 
ecological differences between species. 

S
ta

te
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Never 
Less than 20% of NTS individuals experience a reduction in their 
reproductive potential as the result of an attack by the BCA. 

Sometimes 
Between 20% and 80% of NTS individuals experience a 
reduction in their reproductive potential as the result of an attack 
by the BCA. 

Always 

More than 80% of NTS individuals experience a reduction in 
their reproductive potential as the result of an attack by the BCA. 

Model component(s) 7. Direct impacts (input variable) 

 
  



BCA attacks NTS 

Definition Comments 

The frequency at which susceptible NTS individuals in the 
population are attacked by the BCA. 

Node with conditional prior probability 
table. Integration of the parent nodes: 
“NTS BCA encounters” and “BCA 
attacks NTS when encounters”. 

These parent nodes are equally 
weighted. When no encounters occur, 
or when no attacks occur when there 
are encounters, the variable BCA 
attacks on NTS rate as “Never” with a 
100% probability.  

It rates as 100% “Always” when 
encounters always occur and when 
attacks always occur when there are 
encounters, and as “Sometimes” in all 
other situations. 

S
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Never 
Less than 20% of the NTS individuals in the population are 
attacked by the BCA. 

Sometimes 
Between 20% and 80% of the NTS individuals in the population 
are attacked by the BCA. 

Always 

More than 80% of the NTS individuals in the population are 
attacked by the BCA. 

Model component(s) 7. Direct impacts (intermediate variable) 

 
   



BCA lethal impact on NTS 
population 

Definition Comments 

The proportion of NTS individuals in the population that die 
before they can reproduce because they have been 
attacked by the BCA. 

Node with conditional prior probability 
table. Integration of the parent nodes: 
“BCA attacks NTS” and “NTS mortality 
after successful attacks”. 

These parent nodes are equally 
weighted. When no attacks occur, or 
when no attacks are not associated with 
mortality, the variable BCA lethal impact 
on NTS rate as “None” with a 100% 
probability.  

It rates as 95% “High” when attacks 
always occur and when these attacks 
are lethal (reduced to 80% when 
attacks occur sometimes). Attacks that 
are only sometimes lethal yield 
intermediate values, for instance a 80 % 
probability of “Low” lethal impact on the 
NTS population. 

S
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None 
Less than 20% of the NTS individuals in the population die 
before they can reproduce because they have been attacked by 
the BCA. 

Low 
Between 20% and 80% of the NTS individuals in the population 
die before they can reproduce because they have been attacked 
by the BCA. 

High 

More than 80% of the NTS individuals in the population die 
before they can reproduce because they have been attacked by 
the BCA. 

Model component(s) 7. Direct impacts (intermediate variable) 

 
  



 

BCA non-lethal impact on 
NTS population 

Definition Comments 

The proportion of NTS individuals in the population that 
experience non-lethal  impact affecting their reproductive 
fitness because they have been attacked by the BCA. 

Node with conditional prior probability 
table. Integration of the parent nodes: 
“BCA attacks NTS”, “BCA non-lethal 
fitness impact after attacks” and “NTS 
mortality after successful attacks”. 

These parent nodes are unequally 
weighted. A non-lethal impact on NTS 
population requires attacks that are 
successful but non-lethal. It is rated with 
a “High” rating only in situations where 
there are always attacks, the non-lethal 
fitness impact is high and, there is no 
mortality (100% probability of a non-
lethal impact) or occasional mortality 
(10% probability). 

S
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None 
Less than 20% of the NTS individuals in the population 
experience non-lethal fitness impact because they have been 
attacked by the BCA. 

Low 
Between 20% and 80% of the NTS individuals in the population 
experience non-lethal fitness impact because they have been 
attacked by the BCA. 

High 

More than 80% of the NTS individuals in the population 
experience non-lethal fitness impact because they have been 
attacked by the BCA. 

Model component(s) 7. Direct impacts (intermediate variable) 

 
 

  



BCA direct impact on NTS 
population 

Definition Comments 

The introduction of the BCA causes a reduction in 
abundance of the NTS in the considered habitat, through 
direct interactions. 

Node with conditional prior probability 
table. Integration of the parent nodes: 
“BCA lethal impact on NTS population” 
and “NTS non-lethal impact on NTS 
population”. 

These parent nodes are unequally 
weighted. A lethal impact implies the 
death of the NTS before age of 
reproduction, hence any “High” rating 
for lethal impact yields a 100% 
probability of an overall direct impact.  

A non-lethal impact has a lower impact 
on the overall direct impact. In absence 
of lethal impact, a “High” non-lethal 
impact only yields a 50% probability of 
impact. This rating increases to 80% 
with a “Low” lethal impact. 
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No 

Direct interactions between the BCA and the NTS, such as 
predation, parasitism or herbivory, do not result in a reduction in 
abundance of the NTS population. There are no interactions 
between the two species, or if such interactions exist, they only 
cause short-term fluctuations in the local abundance of the NTS. 
No substantial population reduction of the NTS, e.g. a more than 
10% decrease, is considered likely to occur over the long term 
(10+ years).   

Yes 

Direct interactions between the BCA and the NTS, such as 
predation, parasitism or herbivory, result in a reduction in 
abundance of the NTS population. A substantial population 
reduction of the NTS, e.g. a more than 10% decrease, is 
considered likely to occur over the long term (e.g. 10+ years).   

Model component(s) 
7. Direct Impacts (intermediate variable) 

9. Impacts 

 
   



Model Component 8: 

Indirect Impacts 

 

Note. The variable with a double border has been defined in Model Component 4. 

 

   



Potential for BCA to have 
indirect impact on NTS 

population 

Definition Comments 

The co-occurrence of the BCA, the NTS, and other 
organisms in the considered habitat, may cause a reduction 
in abundance of the NTS, through indirect interactions. 

Node with unconditional prior probability 
table (input variable). Default prior 
probability distribution for parasitoid-
host systems: 50% No, 45% Low, 5% 
High. 

 

Input probabilities must be assigned 
based on the best available information 
on abundances and feeding 
relationships between the BCA, the TS 
and NTS, as well as their prey/hosts 
and natural enemies. Food webs for 
instance, can be drawn to identify the 
species with which the BCA can be 
directly interacting, the proportion of 
that population affected, and identify 
how the NTS is connected to those 
populations in ways that can result in 
indirect effects. 
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None 

No indirect interactions between the BCA and the NTS, defined 
as population feedbacks mediated through the interaction of two 
or more biotic agents, have been identified to have a negative 
effect on individuals of the NTS. 

Low 

One or several indirect interactions between the BCA and the 
NTS, defined as population feedbacks mediated through the 
interaction of two or more biotic agents, have been identified, 
with the potential to have a negative effect on individuals of the 
NTS. However, if such interactions exist, they will only cause 
short-term fluctuations in the local abundance of the NTS. No 
substantial population reduction of the NTS, e.g. a more than 
10% decrease, is expected over the long term (10+ years).   

High 

One or several indirect interactions between the BCA and the 
NTS, defined as population feedbacks mediated through the 
interaction of two or more biotic agents, have been identified, 
with the potential to have a negative effect on individuals of the 
NTS. These may result in an irreversible decline in the 
population of the NTS, rather than just short-term fluctuations in 
local abundance. A substantial population reduction of the NTS, 
e.g. a more than 10% decrease, is expected over the long term 
(10+ years).   

Model component(s) 8. Indirect Impacts (input variable) 

 
  



BCA indirect impact on 
NTS population 

Definition Comments 

The introduction of the BCA causes a reduction in the 
abundance of the NTS in the considered habitat, through 
indirect interactions. 

Node with conditional prior probability 
table. Integration of the parent nodes: 
“BCA population in NTS habitat” and 
“Indirect impact potential on NTS 
population”. 

These parent nodes are unequally 
weighted. When there is no BCA in the 
considered habitat, or when there the 
BCA indirect impact potential is rated as 
“None”, there is a 100% probability for 
the indirect impact being rated as “No”. 

There is also a high probability, ≥ 90%, 
of “No” indirect impact in presence of 
“Small transitional” BCA populations.  
Conversely, the probability of indirect 
impact is affected by the potential for 
indirect impact for “Small persistent” (up 
to 50% probability) or “Large” 
populations of the BCA (up to 99% 
probability).   

S
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No 

Indirect interactions between the BCA and the NTS, defined as 
population feedbacks mediated through the interaction of two or 
more biotic agents, do not result in a reduction in abundance of 
the NTS population. There are no indirect interactions between 
the two species, or if such interactions exist, they only cause 
short-term fluctuations in the local abundance of the NTS (or an 
increase of the population of the NTS). No substantial population 
reduction of the NTS, e.g. a more than 10% decrease, is 
considered likely to occur over the long term (10+ years).   

Yes 

Indirect interactions between the BCA and the NTS, defined as 
population feedbacks mediated through the interaction of two or 
more biotic agents, result in a reduction in abundance of the 
NTS population. A substantial population reduction of the NTS, 
e.g. a more than 10% decrease, is considered likely to occur 
over the long term (10+ years).   

Model component(s) 
8. Indirect Impacts (intermediate variable) 

9. Impacts 

  



Model Component 9: 

Impacts 

 

Note. The variables with a double border have been defined in Model Component 7 and 8. 

  



BCA impact on NTS 
population 

Definition Comments 

The introduction of the BCA causes a reduction in the 
abundance of the NTS in the considered habitat, through 
direct and/or indirect interactions. 

Node with conditional prior probability 
table. Integration of the parent nodes: 
“BCA direct impact on NTS population” 
and “BCA indirect impact on NTS 
population”. 

These parent nodes are equally 
weighted. In absence of direct and 
indirect impact, there is a 100% 
probability of no impact. In presence of 
both direct and indirect impact, there is 
a 100% probability of an impact. The 
presence of only direct or indirect 
impact yields a 95% probability of an 
impact.  

S
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No 

The introduction of the BCA has no negative impacts on the 
population of the NTS (or has a positive impact through indirect 
interactions). No substantial population reduction of the NTS, 
e.g. a more than 10% decrease, is considered likely to occur 
over the long term (10+ years).   

Yes 

The introduction of the BCA negatively impacts the population of 
the NTS. A substantial population reduction of the NTS, e.g. a 
more than 10% decrease, is considered likely to occur on the 
long term (10+ years).   

Model component(s) 9. Impacts (output variable) 
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