Supplementary Appendix to the publication: Marcot, B. G., M. P. Thompson, M. C. Runge, F. R. Thompson, S. McNulty, D. Cleaves, M. Tomosy, L. Fisher, and A. Bliss. 2012. Recent advances in applying decision science to managing national forests. Forest Ecology and Management 285:123-132.

Supplementary Appendix. Tools and approaches useful in stages of structured decision-making, with examples of applications. Many tools or approaches can serve more than one stage. Areas of uncertainty addressed by each tool or approach (sensu Ascough et al. 2008): LU = linguistic uncertainty, KU = knowledge uncertainty, VU = variability uncertainty, DU = decision or preference uncertainty.

Name of tool or approach	Use and type of uncertainty addressed	Examples of application		
	Problem Structuring Stage			
Cognitive Mapping and Modeling	Organizes and synthesizes system components and dynamics. LU, KU	Mendoza and Prabhu, 2005 (participatory modeling and sustainable forest management); Wolfslehner and Vacik, 2011 (forest management sustainability evaluation)		
Influence diagrams	Represents key system parameters, decision points, and outcomes in a qualitative graph. Can be further developed into other quantitative model types (e.g., state and transition models, Bayesian network). LU, KU	Bashari et al., 2009 (rangeland management)		
Decision tree	Diagrams choices, outcomes (utilities), and probabilities to evaluate expected values of alternatives; evaluates knowledge and preference (risk attitude) uncertainties; useful for all SDM stages. KU, VU, DU	Failing et al., 2004 (adaptive management); Wan et al., 2009 (vegetation modeling)		
Objectives hierarchy analysis	Helps resolve conflicting objectives, social values, and preferences. VU, DU	Maguire et al., 2004 (invasive species management)		
Problem Analysis Stage				
Simulation modeling	A broad set of tools useful for modeling system dynamics and response to management, e.g. timber growth and yield, wildfire, hydrology, climate change, weather. VU, DU	Krawchuk and Cumming, 2011 (forest fire under climate change); Vuilleumier et al., 2011 (invasive species control)		
Bayesian networks	Models the conditional dependence between variables accounting for prior knowledge. KU, VU	Aalders, 2008 (land-use decisions); Dlamini, 2010 (fire risk analysis),		

Name of tool or approach	Use and type of uncertainty addressed	Examples of application
Data mining	Analyzes relationships between numerous data fields in an existing database, gaining new knowledge. KU	Dlamini, 2011 (vegetation mapping)
Fuzzy logic, fuzzy set theory models	Allows computation of vague and uncertain data using a membership function for data inputs. LU, KU, VU	Glenz et al., 2008 (flooding impact on woody species growth); Reeves et al., 2006 (evaluating watershed condition and aquatic habitat)
Rough set theory	Unknown values for data are represented by their approximated lower and upper bound. KU, VU	Xie et al., 2011 (land cover data retrieval)
Analytic Hierarchy Process (AHP)	Hybrid approach allowing for imprecise and vague definitions embedded within a hierarchy. Allows for joint consideration of objective and subjective information with expert judgment. KU, VU	Coulter et al., 2006 (forest roads); Hessburg et al., 2007 (wildfire danger, fuels treatments),
Analytic Network Process (ANP)	Better for expert judgment use and capturing feedbacks and interdependencies, relative to AHP. KU, VU	Bottero et al., 2011 (wastewater treatment assessment); Wolfslehner et al., 2005 (sustainable forest management)
Rule and network induction	Results in rules or networks based on the relationship between a given set of attributes; networks can then be further developed as probability transition models or Bayesian networks. LU, KU, VU	Berger, 2004 (crop suitability)
Neural networks	Allows modeling of nonlinear and unknown relationships. KU, VU	Ejrnaes et al., 2002 (habitat quality); Scrinzi et al., 2007 (forest distribution data)
Reliability analysis	Assessment of the potential failures (probabilities and timing) of a system and their effects. VU	Chowdhury et al., 2009 (drinking water contaminants)
Scenario analysis	Considers multiple outcomes providing a range of alternatives and their likelihoods. KU	Bohnet et al., 2011 (sustainable landscape development)
Comparative risk assessment	Extends traditional risk assessment to include decision space available to managers and stakeholders to allow them to explore tradeoffs between alternative courses of action. VU, KU	Ager et al., 2007 (fuel treatment strategies); Calkin et al., 2011 (wildland fire management)

Name of tool or approach	Use and type of uncertainty addressed	Examples of application
	Decision Point Stage	
Valuation & Cost- Benefit Analysis	A family of stated and revealed preference models for establishing the value of non-marketable goods and services. VU, DU	Champ et al., 2010 (hedonic pricing model and homebuyer wildfire risk perceptions); Holmes et al., 2004 (contingent valuation and riparian restoration),
Exact Optimization Methods	A variety of mathematical techniques that can identify a set of non- dominated alternatives or a single best answer. Includes linear programming, nonlinear programming, integer programming, others. VU, DU	Thompson et al., 2010 (forest road erosion control); Toth et al., 2009 (spatial harvest scheduling with habitat objectives)
Heuristic Optimization Methods	Iteratively update solution(s) through process of information exchange, self- adaptation, and competition; entails perturbing decision vector, accepting and retain new solution(s) according to various criteria. Includes evolutionary algorithms, genetic algorithms, simulated annealing, tabu search, others. VU, DU	Icaga, 2005 (water quality monitoring); Kennedy et al., 2008 (fuel treatment planning),
Multi-attribute utility theory (MAUT)	Defines a cardinal utility function according to all criteria, typically by defining performance of each. VU, DU	Merkhofer et al., 1997 (siting hazardous waste management facility); Moffett et al., 2005 (conservation planning)
Analytic Hierarchy Process (AHP)	Pairwise comparisons of attributes/criteria based on linguistic scale then converted to ratio-scale weights, which can be aggregated up through an objective hierarchy. LU, VU, DU	Darin et al., 2010 (invasive plant management); Wolfslehner et al., 2005 (sustainable forest management)
Simple Multi- Attribute Ranking Technique (SMART)	Assigns criteria weights on 0-100 scale, by scaling weights for all attributes relative to the most important attribute, assigned 100. DU	Kajanus et al., 2004 (tourism management and sustainable development); Reynolds, 2001 (salmon habitat restoration)

Stochastic Multicriteria Acceptability Analysis (SMAA)	Family of methods designed to facilitate decision-making in contexts where both criteria and preferences may be subject to uncertainty; based on exploring the weight space in order to describe the preferences that would make each alternative the most preferred one, or that would give a certain rank for a specific alternative.	Kangas et al., 2003 (forest management plan development); Kangas et al., 2005 (natural resource management)		
	VU, DU			
Implementation and Monitoring Stage				
Multimodel analysis	Multiple models for evaluating various representations of expert knowledge, scales, and variable interactions. KU, VU	Rehme et al., 2011 (general application)		
Multi-agent systems	Models multiple interacting "agents" (programs, humans, or human teams), representing diverse interests, in role- playing scenarios. VU	Lynam et al., 2002 (rangeland management)		

References - Supplementary Appendix

- Aalders, I. 2008. Modeling land-use decision behavior with Bayesian belief networks. Ecology and Society 13(1):16. [online] URL: http://www.ecologyandsociety.org/vol13/iss1/art16/.
- Ager, A.A., Finney, M.A., Kerns, B.K., Maffei, H. 2007. Modeling wildfire risk to northern spotted owl (*Strix occidentalis caurina*) habitat in Central Oregon, USA. Forest Ecology and Management 246:45-56.
- Ascough, J.C., II, Maier, H.R., Ravalico, J.K., Strudley, M.W. 2008. Future research challenges for incorporation of uncertainty in environmental and ecological decision-making. Ecological Modelling 219(3-4):383-399.
- Bashari, H., Smith, C., and Bosch, O.J.H. 2009. Developing decision support tools for rangeland management by combining state and transition models and Bayesian belief networks. Agricultural Systems 99:23-34.
- Berger, P.A. 2004. Rough set rule induction for suitability assessment. Environmental Management 34(4):546-558.
- Bohnet, I.C., Roebeling, P.C., Williams, K.J., Holzworth, D., van Grieken, M.E., Pert, P.L., Kroon, F.J., Westcott, D.A., Brodie, J. 2011. Landscapes Toolkit: an integrated modelling framework to assist stakeholders in exploring options for sustainable landscape development. Landscape Ecology 26(8):1179-1198.
- Bottero, M., Comino, E., Riggio, V. 2011. Application of the analytic hierarchy process and the analytic network process for the assessment of different wastewater treatment systems. Environmental Modelling & Software 26:1211-1224.
- Calkin, D.E., Finney, M.A., Ager, A.A., Thompson, M.P., Gebert, K.G. 2011. Progress towards and barriers to implementation of a risk framework for Federal wildland fire policy and decision making in the United States. Forest Policy and Economics 13(5):378-389.
- Champ, P.A., Donovan, G.H., C.M. Barth. 2010. Homebuyers and wildfire risk: A Colorado Springs case study. Society and Natural Resources 23: 58-70.
- Chowdhury, S., Champagne, P., McLellan, P.J. 2009. Uncertainty characterization approaches for risk assessment of DBPs in drinking water: A review. Journal of Environmental Management 90(5):1680-1691.
- Coulter, E.D., Sessions, J., Wing, M.G. 2006. Scheduling forest road maintenance using the Analytic Hierarchy Process and heuristics. Silva Fennica 40: 143-160.
- Darin, G.M.S., Schoenig, S., Barney, J.N., Panetta, F.D., DiTomaso, J.M. 2010. WHIPPET: A novel tool for prioritizing invasive plant populations for regional eradication. Journal of Environmental Management 92(1):131-139.
- Dlamini, W.M. 2010. A Bayesian belief network analysis of factors influencing wildfire occurrence in Swaziland Environmental Modelling & Software 25(2):199-208.
- Dlamini, W.M. 2011. A data mining approach to predictive vegetation mapping using probabilistic graphical models. Ecological Informatics 6:111-124.
- Ejrnaes, R., Aude, E., Nygaard, B., Munier, B. 2002. Prediction of habitat quality using ordination and neural networks. Ecological Applications 12(4):1180-1187.
- Failing, L., Horn, G., Higgins, P. 2004. Using expert judgment and stakeholder values to evaluate adaptive management options. Ecology and Society 9(1):13 Online: www.ecologyandsociety.org/vol9/iss1/art13.

- Glenz, C., Iorgulescu, I., Kienast, F., Schlaepfer, R. 2008. Modelling the impact of flooding stress on the growth performance of woody species using fuzzy logic. Ecological Modelling 218(1-2):18-28.
- Hessburg, P.F., Salter, R.B., James, K.M. 2007. Re-examining fire severity relations in premanagement era mixed conifer forests: inferences from landscape patterns of forest structure. Landscape Ecology 22:5-24.
- Holmes, T.P., Bergstrom, J.C., Huszar, E., Kask, S.B., Orr, F., III. 2004. Contingent valuation, net marginal benefits, and the scale of riparian ecosystem restoration. Ecological Economics 49(1): 19-30.
- Icaga, Y. 2005. Genetic algorithm usage in water quality monitoring networks optimization in Gediz (Turkey) River Basin. Environmental Monitoring and Assessment 108(1-3):261-277.
- Kajanus, M., Kangas, J., Kurtilla, M. 2004. The use of value focused thinking and the A'WOT hybrid method in tourism management. Tourism Management 25(4):499-506
- Kangas, J., Hokkanen, J., Kangas, A.A., Lahdelma, R., Salminen, P. 2003. Applying stochastic multicriteria acceptability analysis to forest ecosystem management with both cardinal and ordinal criteria. Forest Science 49(6):928-937.
- Kangas, J., Store, R., Kangas, A. 2005. Socioecological landscape planning approach and multicriteria acceptability analysis in multiple-purpose forest management. Forest Policy and Economics 7(4):603-614.
- Kennedy, M.C., Ford, E.D., Singleton, P., Finney, M., Agee, J.K. 2008. Informed multiobjective decision-making in environmental management using Pareto optimality. Journal of Applied Ecology 45(1):181-192.
- Krawchuk, M.A., Cumming, S.G. 2011. Effects of biotic feedback and harvest management on boreal forest fire activity under climate change. Ecological Applications 21:122-136.
- Lynam, T., Bousquet, F., Le Page, C., d'Aquino, P., Barreteau, O., Chinembiri, F., Mombeshora, B. 2002. Adapting science to adaptive managers: spidergrams, belief models, and multiagent systems modeling. Conservation Ecology 5(2):24. [online] URL: http://www.consecol.org/vol5/iss2/art24.
- Maguire, L.A. 2004. What can decision analysis do for invasive species management? Risk Analysis 24(4):859-868.
- Mendoza, G.A., Prabhu, R. 2005. Combining participatory modeling and multi-criteria analysis for community-based forest management. Forest Ecology and Management 207(1-2):145-156.
- Merkhofer, M.W., Conway, R., Anderson, R.G. 1997. Multiattribute utility analysis as a framework for public participation in siting a hazardous waste management facility. Environmental Management 21:831-839.
- Moffett, A., Garson, J., Sarkar, S. 2005. MultCSync: a software package for incorporating multiple criteria in conservation planning. Environmental Modelling & Software 20(10):1315-1322.
- Reeves, G.H., Williams, J.E., Burnet, K.M., K. Gallo. 2006. The Aquatic Conservation Strategy of the Northwest Forest Plan. Conservation Biology 20(2):319-329.
- Rehme, S.E., Powell, L.A., Allen, C.R. 2011. Multimodel inference and adaptive management. Journal of Environmental Management 92(5):1360-1364.
- Reynolds, K.M. 2001. Prioritizing salmon habitat restoration with the AHP, SMART, and uncertain data. Pp. 199-218 in: Schmoldt, D., Kangas, J., Mendoza, G.M., Pesonen, M.,

editors. The Analytic Hierarchy Process in natural resources and environmental decision making. Kluwer Academic Publishers, Dordrecht, The Netherlands.

- Scrinzi, G., Marzullo, L., Galvagni, D. 2007. Development of a neural network model to update forest distribution data for managed alpine stands. Ecological Modelling 206(3-4):331-346.
- Thompson, M.P., Sessions, J., Boston, K., Skaugset, A., Tomberlin, D. 2010. Forest road erosion control using multiobjective optimization. Journal of the American Water Resources Association 46(4):712-723.
- Toth, S.F., Haight, R.G., Snyder, S.A., George, S., Miller, J.R., Gregory, M.S., Skibbe, A.M. 2009. Reserve selection with minimum contiguous area restrictions: An application to open space protection planning in suburban Chicago. Biological Conservation 142(8): 1617-1627.
- Vuilleumier, S., Buttler, A., Perrin, N., Yearsley, J.M. 2011. Invasion and eradication of a competitively superior species in heterogeneous landscapes. Ecological Modelling 222(3):398-406.
- Wan, L., Zhang, B., Kemp, P., Li, X. 2009. Modelling the abundance of three key plant species in New Zealand hill-pasture using a decision tree approach. Ecological Modelling 220(15):1819-1825.
- Wolfslehner, B., Vacik, H. 2011. Mapping indicator models: From intuitive problem structuring to quantified decision-making in sustainable forest management. Ecological Indicators 11(2):274-283.
- Wolfslehner, B., Vacik, H., Lexer, M.J. 2005. Application of the analytic network process in multi-criteria analysis of sustainable forest management. Forest Ecology and Management 207(1-2):157-170.
- Xie, F., Lin, Y., Ren, W. 2011. Optimizing model for land use/land cover retrieval from remote sensing imagery based on variable precision rough sets. Ecological Modelling 222(2):232-240.