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Abstract

Daily flight activity patterns of forest insects are influenced by temporal and meteorological

conditions. Temperature and time of day are frequently cited as key drivers of activity; how-

ever, complex interactions between multiple contributing factors have also been proposed.

Here, we report individual Bayesian network models to assess the probability of flight activity

of three exotic insects, Hylurgus ligniperda, Hylastes ater, and Arhopalus ferus in a man-

aged plantation forest context. Models were built from 7,144 individual hours of insect sam-

pling, temperature, wind speed, relative humidity, photon flux density, and temporal data.

Discretized meteorological and temporal variables were used to build naïve Bayes tree aug-

mented networks. Calibration results suggested that the H. ater and A. ferus Bayesian net-

work models had the best fit for low Type I and overall errors, and H. ligniperda had the best

fit for low Type II errors. Maximum hourly temperature and time since sunrise had the largest

influence on H. ligniperda flight activity predictions, whereas time of day and year had the

greatest influence on H. ater and A. ferus activity. Type II model errors for the prediction of

no flight activity is improved by increasing the model’s predictive threshold. Improvements in

model performance can be made by further sampling, increasing the sensitivity of the flight

intercept traps, and replicating sampling in other regions. Predicting insect flight informs an

assessment of the potential phytosanitary risks of wood exports. Quantifying this risk allows

mitigation treatments to be targeted to prevent the spread of invasive species via interna-

tional trade pathways.

Introduction

Understanding the abiotic factors that control flight behavior may allow the prediction of flight

activity as a function of forecast weather conditions. Such modelling could provide an assess-

ment of the potential for colonization by dispersing bark beetles or wood borers of recently

harvested Pinus radiata D. Don logs. Understanding the potential for colonization is an

important step toward a risk-based approach to managing the phytosanitary requirements for

wood exports [1].

New Zealand has 1.7 million ha of managed plantation forests, predominantly (90%) single

species, even-age stands of the exotic P. radiata [2]. Exotic wood boring and bark beetles are
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sometimes intercepted at New Zealand’s borders, and some have eluded detection, subse-

quently established, and are now spread widely throughout the country [3]. Three colonizers

that are now abundant in plantation forests are two species of bark beetles (Scolytinae), Hylur-
gus ligniperda Fabricius and Hylastes ater (Paykull), and one wood borer (Cerambycidae),

Arhopalus ferus (Mulsant). All three species are saprophytes that colonize recently dead or

dying trees [4–6].

Seasonal flight activity has been extensively studied, particularly for H. ligniperda and H.

ater. Results vary, likely due to the influence of local resources and differences in habitat and

abiotic conditions between continents. Reay et al. [7] reported spring and autumn flight activ-

ity peaks of H. ligniperda in New Zealand’s central North Island, and Tribe [8] observed an

autumnal (April/May) peak in flight activity (April/May) in South Africa, whereas Mausel

et al. [9] report a single peak of flight activity in spring (September/October) in two regions of

Chile and a bi-modal activity pattern in a third region. Comprehensive daily sampling of H.

ligniperda across eight regions in New Zealand indicate the existence of both unimodal and

bimodal phenology patterns (Scion, unpublished data). Reay et al. [7] report a single autumn

peak of H. ater flight activity in New Zealand, whereas Mausel et al. [9] observed both spring

and autumn peaks in Chile. Reay et al. [7] acknowledged the potential of missing spring flight

activity as their sampling began in October. Similarly Sopow et al. [10] report a strong autumn

peak of activity, but like Reay et al. [7] their sampling did not encompass early spring condi-

tions. Recent sampling confirms a strong late summer/autumn emergence of H. ater, with

smaller spring flights in some regions in late August/September (Scion, unpublished data).

Arhopalus ferus has a single period of flight activity in New Zealand that begins in late October

and concludes in late April (Scion, unpublished data).

Despite the attention devoted to the seasonal phenology of these species, little is known

regarding the abiotic factors that determine intraday flight activity patterns. Both H. ligniperda
and H. ater reportedly have a generally crepuscular (active during the hours of dawn and

dusk); In New Zealand Kerr et al. [11] sampled every three hours over two independent

72-hour periods and found activity peaks for both species from 07:30 to 10:30 and again at

19:30 to 22:30. Similar crepuscular flight patterns have been observed in other Scolydidae, e.g.,

Dendroctonus brevicomis LeConte in California, USA [12], Pityophthorus juglandis Blackman

in California, USA [13] and Hylastes nigrinus (Mannerheim) in Oregon, USA [14]. However,

patterns can be seasonal; e.g., in Israel Orthotomicus erosus (Wollaston) and Pityogenes calcara-
tus (Eichhoff) were crepuscular in spring and summer but had a unimodal midday peak of

flight activity in winter [15].

Arhopalus ferus is a nocturnal species; small outdoor cage studies conducted in New Zea-

land using an infrared movement detector indicated peak activity from 21:00 to 24:00, with

some evidence of an additional peak in male activity at dawn in New Zealand [16]. Field trap-

ping in New Zealand at intervals of three hours corroborates these captive studies with maxi-

mum trap catch of A. ferus occurring in 19:30 to 22:30 and 22:30 to 1:30 sampling periods [11].

To date, the abiotic factors that govern the initiation of flight behavior of H. ligniperda, H. ater,
and A. ferus have not been quantified. However, morning flight activity of H. ligniperda and H.

ater was reported by Kerr et al. [11] to be coincident with increasing temperature.

Few studies have quantitatively assessed the influence of abiotic factors on the flight of bark

beetles and wood borers. Temperature is frequently cited as a strong predictor of flight activity,

however, light intensity, wind speed, rainfall, and relative humidity also are reported to influ-

ence forest insect flight activity [12, 14, 17, 18]. Although Chen et al. [13] observed strong indi-

vidual relationships between P. juglandis flight activity and temperature, barometric pressure,

light intensity and wind speed, the probability of flight was influenced both collectively and

interactively between these four factors [13]; hence, complex interactions make the prediction
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of flight activity challenging. Such factors may also interact with insects’ chemical host finding

cues and subsequently influence trap sensitivity, thus biasing interpretation of flight behavior.

For example, low wind speeds could prevent the formation of chemical plumes, precluding

effective orientation towards traps by flying insects [18].

Empirical models that quantify the potential risk of infestation by forest insects are needed

to develop a risk management framework to guide future application of phytosanitary treat-

ments for export wood products. To support such a framework we developed empirically-

based Bayesian network (BN) models to predict the flight activity of three exotic forest insects

H. ligniperda, H. ater, and A. ferus in New Zealand as a function of meteorological and tempo-

ral factors in recently clear-cut P. radiata plantations. BNs are graphical networks of variables

connected by logical, correlational, or causal relationships quantified by conditional probabil-

ity tables [19]. They are used widely in ecological and environmental sciences for diagnosis,

forecasting, prediction, and other applications [20], including modelling of invasive inverte-

brates [21]. We chose to use BNs because they express conditions and results as probabilities,

particularly for depicting errors of false presence and false absence. This lends BNs to risk anal-

ysis and risk management applications [22]. Further, BNs are robust to missing data and to

conditions of data multicollinearity and nonlinearity that otherwise violate assumptions in

more traditional multivariate modelling approaches. BNs also can be structured from a combi-

nation of empirical data and expert knowledge, and can be updated with new information as it

comes to hand [23].

Methods

Study sites and insect trapping

Four sites were established in P. radiata plantation forests in Canterbury, New Zealand (S1

Fig, S1 Table). One meteorological station and three flight activity traps were installed at each

site. Traps were located equidistant in a circle 40 m from the meteorological station. Each trap

consisted of an ethanol and alpha-pinene baited black colored flight intercept panel trap with

an electronically controlled stepper motor that rotated a circular carousel to separate trap

catch into individual plastic containers (6286PTCL—SQ PET JAR 58MM 233ML, Stowers,

New Zealand) on an hourly basis (S2 Fig). The panel trap and plastic containers were coated

with an insecticide (cypermethrin), applied at the start of each trapping period, to kill insects

and to minimize the potential for any movement between plastic containers by captured indi-

viduals. All traps at each site were established two weeks before sampling was initiated to

ensure any trap establishment effects, e.g., soil disturbance, did not influence trap efficacy. The

trial was run over three non-consecutive periods, with the first in spring (23 September and 14

October 2014) and then twice in summer (19 November to 18 December 2014, and 13 January

to 11 February 2015). Each of the focal species has a slightly different phenology, hence sam-

pling periods were spread to encompass periods of known flight activity for each species.

Traps were maintained on a daily basis, with insects identified and counted in the field or

brought to the laboratory when large numbers were present in a given sample hour. If a trap

fault occurred during a 24-hour period, all affected sampling periods were discarded.

Variables affecting flight activity

A summary of variables used to model flight activity is provided in Table 1. Meteorological

data were collected using a 2.5-m metal tower (Scottech, Hamilton, New Zealand). Data from

sensors were recorded on a CR1000 (Campbell Scientific, Logan, USA) data logger with mea-

surements taken every minute. Sensors included RM Young wind monitor, model 05103 (RM

Young Company, Michigan, USA); Apogee quantum sun calibration sensor, model sq-110
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photosynthetic flux density sensor (Apogee Instruments, Logan, USA); CSI temperature and

relative humidity probe, model hc2s3 (Campbell Scientific, Logan, USA); and CSI rain gauge,

model tb4 (Campbell Scientific, Logan, USA). All meteorological variables were summarized as

hourly average, maximum, and minimum values using the R-package xts [24], except rainfall

that was calculated as an hourly sum. Time since sunrise and sunset was calculated using the

sunriset function in R-maptools [25]. This calculates the time of sunrise (accuracy ± 1minute)

corrected for location and atmospheric refraction using the formula of Meeus [26].

To define the relationship between meteorological variables and forest insect flight activity,

each was regressed across a series of discrete intervals defined using an unsupervised discretiza-

tion of temperature data, as per the method of Blackburn et al. [27]. Variables were discretized

into 20 intervals using the unsupervised Minimum Description Length (MDL) method in

Weka (vers. 3.6) [28]. Arhopalus ferus flight activity was concentrated at low wind speeds, and

to improve sensitivity to this we left-shifted the discretization to increase bin numbers at low

wind speeds. The maximum observed insect flight activity in each interval was used to fit the

relationship with individual meteorological variables. Outliers in models were identified as

observations with Cook’s distances >1, using R-nlreg [29]. A Gaussian equation (Y = k×exp(-1/

2 � (temperature—μ)2/sigma2)) was used to fit the relationship between maximum interval flight

activity and temperature for all species using the R-nls function. The adjusted R2 for the non-

linear models was calculated using Wherry’s formula [30]. A negative exponential equation

(Y = y0 � exp(wind speed/b) was used to fit the relationship between wind speed and A. ferus
using a generalized non-linear least square, R-nlme [31]. Generalized Additive Models (GAM)

with a gamma distribution (inverse link) were used to fit the relationship between flight activity

and wind speed, photon flux density (PAR), and relative humidity for H. ligniperda, using R-

mgcv [32]. Graphical model validation tools were used to check the model assumptions of vari-

ance homogeneity and normality. The significance of individual GAM models was assessed by

a likelihood ratio test of the model against the null, intercept only, model. The adjusted R2 was

extracted from the model summary. All non-linear modelling was done in R-Version 3.2.2 [33].

Bayesian network model development and calibration

We developed BN structures for each species using supervised machine learning techniques.

The objective of supervised learning is to develop a probabilistic classifier model of a target

Table 1. Temporal and abiotic variables used to model the probability of insect flight.

Variable name Description Units of measure

Temporal

Day of year Day of year as integer Integer

Time since sunrise Elapsed time between the start of the trapping hour and sunrise. Corrected for geospatial differences in

sunrise

Integer (minutes)

Time since sunset The elapsed time between the start of the trapping hour and sunset. Corrected for geospatial

differences in sunset

Integer (minutes)

Abiotic

Maximum hourly

temperature

Maximum temperature within the sample hour ˚C

Photon flux density Average radiant flux of solar radiation within the wavelengths of 400 to 700 nm μmol photons

m−2s−1

Rainfall Accumulated rainfall within the sample hour mm

Relative humidity Average humidity within the sample hour %

Temperature range Difference between maximum and minimum temperature within the sampling hour ˚C

Wind speed Average instantaneous wind speed per hour m−1 s−1

https://doi.org/10.1371/journal.pone.0183464.t001
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variable (here, flight activity) based on predictor observations (temperature, time of day, etc.).

Classifier models provide a predicted probability distribution over a set of classes (in our case,

true or false flight activity), given a set of inputs. The process of developing a BN from data

involves three stages: discretization of continuous variables into range states; identification of

relationships between variables (that is, the network structure); and parameterization of the

probability tables.

For each model training run, the continuous meteorological variables were discretized

using a supervised approach relative to the target variable (flight activity) to allocate discrete

intervals for subsequent Bayesian network modelling. Using a supervised discretization (the

Fayyad et al. [34] Minimum Description Length (MDL) method in Weka version 3.6 [28]).

The supervised discretization process differs from that used above for the discretization of

meteorological variables by providing an information theoretic metric that minimizes the

joint entropy between the continuous variable and target variable [34]. It selects a discretiza-

tion that balances the trade-off between fit to data and model complexity (i.e., more data will

justify a greater number of bins). For some variables, the discretization process did not identify

useful splits because there was no relationship or the correlation was not strong enough in the

data to justify the additional model complexity; in such cases the average value is returned and

we excluded such variables from our BN models as they are not informative of flight activity.

We explored three procedures to generate the BN structure: naïve Bayes [35]; CaMML [36],

which uses an information theoretic metric to infer causal structure; and Tree Augmented

Naïve Bayes (TAN) [37], discussed in detail below. The final network selection was based on a

comparison of classification accuracy. In all cases, the TAN structure performed best, and here

we report only the results of these models, however models from each of the three approaches

are available online at the Australasian Bayesian Network Modelling Society’s BN repository.

TAN structure learning involves augmenting the naïve Bayes structure (where all predictive

variables are children of the target variable), with dependences between the predictive variables

(using a tree structure) to represent correlations between them. TAN and naïve Bayes net-

works are designed specifically for model prediction and not for denoting causal linkages. We

chose this approach because our main objective was to predict insect flight activity. Building

TAN structures and conducting calibration and validation assessments of individual models

were done using the GeNIe (www.bayesfusion.com/#!genie-modeler/lf73d) Application Pro-

gramming Interface (API).

Conditional probability tables of TAN models were learnt using the expectation maximiza-

tion (EM) algorithm [38–40], available in Netica (norsys.com) and GeNIe (and most BN

modeling tools). EM iterates to maximize the log likelihood of the BN given the training data,

calculating conditional probability values from case data by integrating over missing values

[41]. We then conducted sensitivity analysis on the models, using variance reduction [23], to

determine the degree to which predictor variables account for flight probability. As more data

are collected, it is possible to revise and improve the BN by updating the conditional probabili-

ties or by relearning the BN discretizations and structure. We tested the degree to which each

BN model was calibrated to the case files for each species by calculating 5 model performance

indices (logarithmic loss and quadratic (Brier) loss, lower values of which denote better model

performance; and spherical payoff, Gini coefficient, and area under the ROC curve, higher val-

ues of which denote better model performance) and 3 classification error rates (Type I or false

positives, Type II or false negatives, and overall confusion error) [42]. Type I errors repre-

sented prediction of insect flight when there was no flight (i.e., false positive), Type II errors

represented prediction of no flight when flight occurred (i.e., false negative), and overall confu-

sion error is the total error rate over all outcomes. Because Type II error is more egregious in

the context of biosecurity policy (wanting to ensure absence of pest insects), we developed a

Predicting flight activity
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novel ROC curve to depict Type II classification error rates at four probability thresholds of

predicting no flight occurrence: 50, 90, 95, and 99%, whereas traditional ROC curves address

false positives. We identified the best models on the basis of the lowest type II error rates and

the five performance metrics.

Model validation

One possible concern with calibrating BN structures and parameters to case files by using

machine-learning algorithms such as EM is with overfitting the model to the cases observed

[43]. Several approaches have been suggested for testing and avoiding overfitting in BNs [44,

45] but none specifically address Type II errors. We devised a novel approach using cross-vali-

dation [46] that directly addresses our central concern of minimizing Type II errors as follows.

We ran 100 iterations of 4-fold cross-validation analysis, each iteration randomizing the train-

ing and testing samples, and relearning the model discretizations, structure, and parameters

(see above). We initially ran 3-, 4-, and 5-fold cross validations on each species model and

found that error results were nearly identical for each fold, so we settled on 4-fold as the best

balance in sample size between training and testing subsets. We recorded the Type I, Type II,

and overall confusion error rates for each iteration across a range of probability thresholds

from 0 to 1 in 0.001 increments, and then calculated the average, standard deviation, mini-

mum, and maximum error values across all iterations. In addition, we also calculated the num-

ber of standard deviations between the calibration and the average of the 100 runs of 4-fold

cross validation and plotted the outcome as a means of visualizing any bias between calibration

and validation results.

Model influence runs

We conducted influence runs [47] to determine the maximum influence that each covariate

can have on the calculated posterior probability of flight in our model. This was performed by

sequentially selecting each state of the input variable, updating the BN, and recording the

resulting target variable’s posterior probability. Influence runs quantify the range of effects

that each predictor variable set can have on the target outcome, whereas sensitivity analysis

tests variance reduction effects from incremental changes of each predictor variable from their

normative prior probability value settings.

Results

Trap results

A total of 10,135 H. ligniperda, 224 H. ater, and 553 A. ferus were trapped during the course of

7,144 individual hours of sampling spread across 78 non-continuous days at the four sites. In

total there were 759 (11%), 141 (2%), and 197 (3%) positive trap catch hours of H. ligniperda,

H. ater, and A. ferus respectively. Average catch rates per trap varied between the three sample

periods. Hylurgus ligniperda flight activity was more prevalent in spring and early summer, H.

ater more in late summer, and A. ferus most pronounced in the second summer sampling

period (Fig 1).

Although insecticide was used in trapping containers to reduce the potential for internal

movement between containers, 9 individuals were clearly inconsistent with the other 7,144

hourly trap samples and the known behavior of these species. Movement between containers

is the most parsimonious explanation. Specific anomalous catches of note were H. ligniperda
activity at -0.7 and 3.6˚C that are substantially less than all other cases of positive H. ligniperda
flight activity (S3 Fig) and 7 instances of A. ferus activity recorded during the day when photon
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flux density exceeded 500 μmol m-2 s-1 (S4 Fig). These discrepancies were removed from non-

linear regression and BN modeling; however, for completeness they are shown in the overall

capture outcomes (Figs 1 and 2, S3–S5 Figs). Trap catch of H. ligniperda and H. ater indicated

a generally crepuscular flight activity pattern, with H. ater exhibiting a more pronounced

decline in midday flight activity than H. ligniperda (Fig 2). Arhopalus ferus was clearly noctur-

nal with peak activity occurring within the first hour post sunset (Fig 2).

Environmental correlates

Average hourly values of each abiotic variable across all sites and time periods are summarized

in S6 Fig. Minimum average hourly temperature across all days and sites occurred just before

sunrise and peaked at midday. Wind speed was correlated with temperature (r = 0.27, n =

14,138, P<0.001) and peaked in early afternoon. Relative humidity was inversely correlated

with temperature (r = -0.66, n = 14,138, p<0.001). Photon flux density, as a proxy for light

intensity, was unimodal with respect to time of day with peak intensity at midday. Hourly

accumulated rainfall was the most variable abiotic factor between sites (greatest standard error

of the mean, S6 Fig) and showed no consistent daily pattern.

A Gaussian relationship fitted the observed flight activity of H. ligniperda (k = 83.18, μ =

18.57, σ = 3.40), H. ater (k = 3.16, μ = 18.29, σ = 3.46), and A. ferus (k = 10.16, μ = 17.28, σ =

3.07) as a function of maximum hourly temperature (S3 Fig). Peak flight activity occurred

between 17 and 18˚C for all species, with flight activity observed at a minimum hourly maxi-

mum temperature of 6.3, 6.3, and 6.4˚C for H. ligniperda, H. ater, and A. ferus respectively

(excluding outliers discussed above). No flight activity was observed when maximum tempera-

ture within an hour exceeded 31.6, 26.3, and 24.7˚C for H. ligniperda, H. ater, and A. ferus
respectively.

A generalized additive model with a Gamma distribution (Table 2), and a negative expo-

nential model (y0 = 11.93, b = -3.65), best described the relationships between flight activity

Fig 1. Hourly catch per trap averaged across all traps at the four study sites. Separate panels indicate

the three discontinuous time periods when sampling was undertaken.

https://doi.org/10.1371/journal.pone.0183464.g001
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and wind speed, for H. ligniperda and A. ferus, respectively (S5 Fig). Observed flight activity of

H. ligniperda was low at very low wind speeds, but increased quickly with rising wind speed

and peaked at 2 m s-1. Arhopalus ferus was capable of active flight at 15 m s-1, however most

flight activity of all species occurred at wind speeds < 10 m s-1. No clear relationship was

observed between the upper bound of H. ater flight activity and wind speed.

Fig 2. Number of positive trap catch hours as a function of time since sunrise in hourly bins for H.

ligniperda and H. ater and for time since sunset for A. ferus. Because day length varied as a function of

the day of the year during the study a range is provided that encompasses the period when sunrise or sunset

occurred. Dashed lines indicate the period where sunset occurred as a function of time since sunrise for H.

ligniperda and H. ater. Similarly for the nocturnal A. ferus these dashed lines indicate the period when sunrise

occurred as a function of time since sunset.

https://doi.org/10.1371/journal.pone.0183464.g002

Table 2. Results from the final General Additive Models (GAMs) for the flight activity of H. ligniperda. GAMs have a parametric component and a

smoothing part, hence the distinction between parametric coefficients and the smoothing terms. s() = smooth term for a continuous variable, SE = standard

error of the estimate, t = t-statistic, P = P-value, edf = estimated degrees of freedom, F = F-statistic. Wdspd = Wind speed, PAR = Photon flux density, and

RH = Relative humidity. Significant values are denoted with P <0.05 = *, P <0.01 = **, P <0.001 = ***.

Parametric coefficients Estimate SE t P

Intercept

Wdspd 0.14 0.020 7.01 < 0.001 ***

PAR 0.04 7.5 × 10−3 5.63 < 0.001 ***

RH 0.09 0.015 5.51 < 0.001 ***

Approximate significance of smoother terms edf F P

s(Wdspd) 4.10 8.80 0.016 *

s(PAR) 3.76 3.83 0.022 *

s(RH) 4.05 4.59 0.010 *

https://doi.org/10.1371/journal.pone.0183464.t002
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A generalized additive model with a Gamma distribution best fitted the relationship

between H. ligniperda and photon flux density and relative humidity (Table 2, S4 Fig). Peak

flight activity of H. ligniperda occurred at very low and intermediate photon flux densities, and

at 42% relative humidity. No clear relationship was observed between the upper bound of H.

ater and A. ferus flight activity and either photon flux density or relative humidity (S4 Fig).

Bayesian network models

Bayesian network models are summarized (Table 3) and the best model for each species (Fig

3) was selected by lowest total classification error rate. The probability of H. ligniperda flight

was most sensitive (comprising at least half of all model sensitivity) to maximum hourly tem-

perature and time since sunrise (Table 4). The probability of H. ater flight was most sensitive

to time since sunrise and the time of year (Day of year) (Table 4). The probability of A. ferus
flight was most sensitive to time since sunset (Table 4).

Model calibration

BN model calibration results (Table 5) suggest better model fit for H. ater and A. ferus than for

H. ligniperda, in particular with the latter showing greater values of logarithmic loss and qua-

dratic loss and slightly lower values of spherical payoff, all denoting poorer model fit. Arhopa-
lus ferus had better model fit denoted by higher values of the Gini coefficient and area under

the ROC curve (Fig 4). However, consistently across all model thresholds denoting no flight,

the H. ligniperda model had highest Type I and the lowest Type II errors, and the H. ater
model had highest Type II errors. Overall, calibration results suggested that the H. ater and A.

ferus models had the best fit for low Type I and overall errors, and H. ligniperda had the best fit

for low Type II errors.

As expected, across the four model thresholds denoting no flight, Type I errors increased

and Type II errors decreased, and overall errors increased. At the most stringent criterion of

no flight—that is, when the "no flight" state in the output node achieved� 99% probability—

the H. ligniperda model performed best with minimal Type II errors, but at the cost of a high

Type I error rate. The A. ferus model performed second best with a low Type II error rate but a

higher Type I error, and the H. ater model performed worst with high Type II and Type I

errors. No species model achieved <15% simultaneously for Type I and II error rates across

the four model thresholds.

Model validation

We compared validation to calibration in a novel way. Cross-validation resulted in patterns

similar to the calibration results (Table 5, Fig 5) with H. ligniperda again showing lowest Type

II error rates and H. ater showing highest, and no species model achieving <17% for both

Type I and II error rates across the four model thresholds. In general, Type I and II error rates

were complementary; reducing one increases the other. This pattern is seen also in comparing

calibration and cross-validation results (the green line in Fig 5), where high concordance (low

standard deviation difference between the two results) occurred generally with one error type

Table 3. Description of the best model for each species.

Model Number of nodes Number of linkages Total number of probabilities

H. ligniperda 10 17 190

H. ater 7 11 106

A. ferus 7 11 104

https://doi.org/10.1371/journal.pone.0183464.t003
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but not the other. False positive rates calculated from the all-data calibration (the red line in

Fig 5, left column) generally coincided well with the false positive rates calculated from cross-

validation, for all three species. False negative rates from calibration (the red line in Fig 5, right

column) coincided well with cross-validation for H. ligniperda but less so for the other two spe-

cies, that is, where calibration error rates mostly were less than cross-validation error rates,

suggesting some degree of model overfitting.

Influence runs

Influence runs (Fig 6) suggest that a number of variables are individually associated with

decreased flight probability of all three species. However, only a few variables have major influ-

ence on increased flight probability: increasing maximum hourly temperature (� 17.5C) and

moderate time since sunrise (11–498 min) for H. ligniperda; shorter time since sunset (sam-

pling hours that began <47 minutes before actual sunset) for H. ater; and lower days of the

year (<14) and shorter time since sunset (sampling hours that began 20 min before to 6 min

after actual sunset) for A. ferus. Other variables also are associated with increased flight proba-

bility for all three species, although to lesser degrees.

Fig 3. Bayesian networks models of flight activity of three forest insect species.

https://doi.org/10.1371/journal.pone.0183464.g003

Table 4. Sensitivity analysis of the Bayesian network models (Fig 3), showing degree of sensitivity of insect flight probability to each predictor

variable.

Variable Mutual Information Percent Variance of Beliefs

Hylurgus ligniperda

Maximum hourly temperature 0.07298 14.9 0.008755

Time since sunrise 0.06282 12.9 0.006895

Time since sunset 0.05696 11.7 0.005719

Photon flux density 0.04507 9.23 0.005316

Relative humidity 0.03162 6.48 0.003277

Temperature range 0.01956 4.01 0.002218

Average wind speed 0.01171 2.4 0.00139

Day of year 0.00813 1.66 0.000802

Rainfall 0.00374 0.766 0.00038

Hylastes ater

Time since sunrise 0.0104 7.42 0.0003

Day of year 0.00939 6.7 0.000262

Time since sunset 0.00466 3.33 0.000205

Maximum hourly temperature 0.00753 5.37 0.000179

Wind speed 0.00331 2.36 8.08E-05

Temperature range 0.00209 1.49 4.97E-05

Arhopalus ferus

Time since sunset 0.05908 33.3 0.004525

Photon flux density 0.03249 18.3 0.001138

Day of year 0.02303 13 0.001088

Maximum hourly temperature 0.00833 4.69 0.000246

Temperature range 0.0029 1.64 0.000106

Wind speed 0.00263 1.48 8.09E-05

Time since sunrise 0.00209 1.49 4.97E-05

https://doi.org/10.1371/journal.pone.0183464.t004
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Discussion

Chen et al. [13] highlight the importance of first and second order interactions among multiple

environmental factors as regulators of flight activity in P. juglandis, the invasive walnut twig

borer. Our BN models provide an alternative approach to model the effects of multiple inter-

acting abiotic factors (both meteorological and temporal) on insect flight activity, and thereby

Table 5. Summary of BN model performance. Model performance is assessed at different predictive thresholds with both calibration (entire dataset) and

validation (4-fold cross validation) results presented.

Metric Hylurgus ligniperda Hylastes ater Arhopalus ferus

Logarithmic loss 0.244 0.074 0.068

Quadratic loss 0.148 0.035 0.038

Spherical payoff 0.918 0.982 0.979

Gini coefficient 0.737 0.738 0.915

Area under ROC 0.870 0.868 0.958

Model threshold predicting no flight 50 90 95 99 50 90 95 99 50 90 95 99

Calibration

Type I error rate (%) 3 31 39 56 0 5 8 30 1 5 9 15

Type II error rate (%) 73 12 6 2 100 48 38 12 59 23 14 6

Total error rate (%) 10 29 35 50 2 6 8 29 3 6 9 14

Validation

Average type I error rate (%) 2 30 37 55 <1 3 10 37 <1 6 9 17

Average type II error rate (%) 80 17 10 4 100 81 51 22 71 30 20 10

Average total error rate (%) 10 28 35 49 2 5 11 36 3 6 10 17

https://doi.org/10.1371/journal.pone.0183464.t005

Fig 4. Modified receiver operating curve (ROC) showing model predictions of the true negative state

as a function of the type II (false negative) error rate.

https://doi.org/10.1371/journal.pone.0183464.g004
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determining the overall and individual explanatory power of predictor variables, although

results varied amongst species.

In our best performing BN models, Hylurgus ligniperda flight activity was most sensitive to

maximum hourly temperature, photon flux density, and time since sunrise and sunset (Table 4).

Kerr et al. [11] also observed temporal patterns with distinct morning and evening peaks of H. lig-
niperda and H. ater activity during short-term (two periods of three-hourly sampling over three

days) summer monitoring periods. Similarly, meteorological factors and time of day were key

determinants of the P. juglandis flight activity, as reported by Chen et al. [13]. Such concordance

highlights the need to consider multivariate models to predict flight activity patterns.

Fig 5. False positive (Type I error) rates as a function of the threshold required for the model to predict ‘Yes’,

and false negative (Type II error) rates as a function of the threshold required for the model to predict ‘No’ for

H. ligniperda, H. ater, and A. ferus. Red lines indicate the relationship for the calibration dataset (i.e., full casefile),

blue shading indicates the range of the first standard deviation for 100 runs of 4-fold cross validation, with the inner

white line denoting mean outcomes. Yellow indicates the maximum and minimum values observed during those 100

runs. The green curve represents the number of standard deviations between the calibration and the average of the

100 runs of 4-fold cross validation.

https://doi.org/10.1371/journal.pone.0183464.g005
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Sensitivity of H. ater and A. ferus flight activity to meteorological variables was low com-

pared to the effect of time since sunrise and sunset and the day of the year, although H. ater
flight activity was moderately sensitive to maximum hourly temperature (Table 4). Short-term

activity studies of individual caged cerambycids have demonstrated a range of temporal pat-

terns including diurnal activity, e.g., Callidiellum rufipenne (Motchulsky) [49] and Gaurotes
virginea (L.) [50], nocturnal activity, e.g., A. ferus [16], and cathemeral activity, e.g., Semanotus
bifasciatus (Motschulsky) [49] and Nadezhdiella cantori (Hope) [51]; however more precise

prediction of flight as a function of meteorological factors is currently lacking. The overall low

sensitivity of flight activity of H. ater and A. ferus to meteorological variables in our study may

reflect (1) the small fraction of positive flight activity hours within the calibration dataset, and

(2) lower attractiveness of H. ater and A. ferus to alpha-pinene and ethanol baited panel traps

Fig 6. Model influence runs. Presented as tornado diagrams [48] that have a grey and a black portion, to the

left and to the right, of the expected ("normative") outcome where all other covariates are set to their prior

probability (expected, normative) distributions. Gray portions of the bars show the variables potential range

influence on reducing flight probability; black portions show its potential range of influence on increasing flight

probability. Variables are sorted in order of decreasing overall influence for each model.

https://doi.org/10.1371/journal.pone.0183464.g006
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relative to H. ligniperda. Improving trap sensitivity is one of the most important options to

reduce Type II modelling errors of flight activity for these species (see uncertainties below). To

test the effect of trap sensitivity on the performance of Bayesian network models requires addi-

tional datasets from multiple trap types. Model performance could then be evaluated and

potentially enhanced by adding an additional node for trap type.

Uncertainty as useful information

Our models are built from field data collected from one region (Canterbury) of New Zealand.

The robustness of applying the models to other regions likely depends on the similarity of

environmental conditions (especially weather patterns and climate regimes) to the Canterbury

field site. New Zealand has complex weather patterns with strong gradients in precipitation

from west to east. The most similar meteorological regions to Canterbury are Marlborough,

Wairarapa, Hawke’s Bay and East Cape [52]; however, the robustness of models between

regions would need to be verified by field sampling. The wetter regions down the west coasts

of both islands are likely to be most dissimilar to Canterbury [52].

Prediction of flight activity is inherently complex with many interacting factors, e.g., tem-

perature, light, and wind speed, influencing flight [53]. In such circumstances a BN modeling

approach is advantageous in that it explicitly shows the degree of uncertainty in the prediction

(in this case the flight activity outcome states), denoted as the distribution of posterior proba-

bilities [42]. Because we can assess the implications of uncertainty and error as they propagate

through the network, we can identify predictor variables least well understood that could have

major influences on prediction outcomes. We identified such variables in our use of sensitivity

tests and influence runs, which can be part of a broader assessment of the value of further

information [54, 55] given monitoring and study costs and the degree to which they could

reduce model error, particularly Type II error. Also, the BN models can be incrementally

updated and improved by incorporating new data using the EM algorithm and, where war-

ranted, by restructuring the networks.

Potential effect of sampling errors on model performance

Parameter uncertainty and prediction accuracy of our flight activity models depend on sam-

pling bias, specifically the sensitivity and specificity of the flight intercept panel traps we used

to sample flying beetles. The species we modelled are not known to possess long-range aggre-

gation or sexual pheromone communication systems and our traps relied on kairomones (host

volatiles) of ethanol and alpha-pinene as attractants. Host volatiles are generally less powerful

than pheromones, and that reduces the sensitivity of traps [56]. Lower trap sensitivity increases

the likelihood that our model would predict that conditions are not suitable for flight even

though flight occurred, leading to a Type II error. Low trap sensitivity is one potential explana-

tion for the high Type II error rates when the model threshold to predict ‘No’ is low. Increasing

the models’ predictive threshold partially compensates for this error, but in the absence of data

on true detectability, prediction uncertainty remains. Increasing trap sensitivity may reduce

type II errors, however more sensitive traps have the potential to sample flying insects from a

larger area [57]. Increased sample areas may then be less representative of abiotic prediction

variables measured by the meteorological station. The impact of this trade-off between trap

sensitivity and model performance is currently unknown.

Implications for risk management

Prediction of forest insect flight activity over time provides an opportunity to estimate the

potential rate of post-harvest log colonization by insects during storage in the forest, at

Predicting flight activity

PLOS ONE | https://doi.org/10.1371/journal.pone.0183464 September 27, 2017 15 / 22

https://doi.org/10.1371/journal.pone.0183464


processing sites, or at ports prior to export. Understanding such risks allows phytosanitary

treatments to be targeted effectively, thus reducing the potential for on-going spread of such

species via international trade. To do this requires an understanding of the form of the rela-

tionship between individual log colonization rates and flight activity. Probability of flight must

be combined with the infestation rate to make an assessment of overall phytosanitary risk. The

form of this relationship is currently unknown, but it is likely to depend on the volume of logs

in a given area. Larger concentrations of logs increase the odor plume that will attract beetles

to a site, however they also dilute the instantaneous population of flying insects amongst a

greater volume of logs, hence reducing infestation rate. Furthermore, knowledge of the ecology

of individual species can be used as a management tool to modify the form of the relationship

and reduce the likelihood of log colonization. For example, stacking logs above the ground will

reduce the rate of colonization irrespective of flight activity, as H. ligniperda and H. ater are

known to prefer logs in ground contact [9]. On a wider scale, understanding landscape config-

urations of forest age classes as dispersal corridors or barriers can inform on occurrence of for-

est insect species [58].

Evidence that conditions were not suitable for insect flight from the time of harvest to

export could be used to support the case for temporal periods of low pest pressure when phyto-

sanitary treatments are not necessary, as the risk of log colonization is below the maximum

pest limit of importing countries. Setting an appropriate threshold for log exports requires an

understanding of the potential risk of entry, establishment, and spread of a specific pest in an

importing country [59]. Risk is generally gauged by the probability of an adverse event times

its consequence [60]. Our results provide the first part of a fuller pest risk assessment which

would entail applying the flight probabilities from our models to further analyses of infestation

rates of trees and logs, and then applying those rates to utility estimates of the costs of infesta-

tion that pertain to phytosanitary treatments and monitoring as incurred by the wood prod-

ucts export industry. Such scientific assessments might then be used to inform policy and

management who would set acceptable risk levels, particularly for false negatives [61]—pre-

dicted absence of insect flight activity when in fact insects activity occurred–that have conse-

quences for maintaining export market access.

Selection of acceptable false negative rates has cost implications for export standards and

phytosanitary treatments, and also policy implications for releasing potentially infested wood

products to trading partners. As an example, in dealing with such decisions, some export sec-

tors use specific sampling protocols to identify acceptable risk levels, e.g., no infested items

within a sample of 600 provides an assurance (with 95% confidence) that the infestation rate is

less than 0.5% [62]. Such a monitoring framework could be based on a specific risk attitude,

market implications of false negatives, an acceptable level of detection, and information on

overall infestation rates. In this way, key uncertainties in risk analysis, particularly with false

negatives, can play important roles in informing and guiding policy [63].

Our models pertain to environmental correlates of insect flight activity, namely tempera-

ture, wind speed, humidity, and other variables that are mediated by forest stand structure,

age, proximity to existing stands, and topographic location. Results of the influence analyses

(Fig 6) suggest that flight activity could be variously lowered for the three insect species by

storing harvested logs in areas with lower maximum temperature, relative humidity, wind

speed, and direct solar radiation. Such conditions occur within even-age Pinus radiata forest

stands >15 years old, with canopy closure>20% that can intercept wind and solar insolation.

Hence, temporary in-forest storage of logs is best confined to cut blocks sufficiently small in

size that are embedded in mature stands. This conclusion is supported by Mausel et al. [9]

observation that logs stored in mature stands had lower levels of H. ligniperda and H. ater
colonization.
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Additional steps could refine our models. This includes additional flight activity data to

improve model performance and generalize its application to wider geographic regions. An

economic "value of information" analysis would assist this by focusing effort on predictor vari-

ables that are least well understood but have the most influence on prediction outcomes.

Finally the models should be field tested in an operational framework whereby flight activ-

ity is predicted and infestation of recently harvested logs are monitored. Such analysis can be

used within a risk management framework to help inform future phytosanitary treatment

needs for the global movement of wood commodities, specifically to determine areas of low

pest prevalence and to calculate maximum post-fumigation exposure risk of insect occurrence

and infestation.

Our approach has relevance, in that it can be applied to fundamental ecological studies of

specific organisms and to specific applied ecological problems, including aspects of the inva-

sion process. We recommend to readers that Bayesian networks should be applied more

broadly in the management of complex ecological problems. This recommendation is based

on their ability to utilize both quantitative and qualitative data simultaneously, their robustness

to missing data and conditions of data multicollinearity and nonlinearity that can otherwise

violate assumptions in more traditional multivariate modelling, and their ease of adoption by

decision makers due to their interactive, graphical interface.
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S1 Fig. Location of study sites in Canterbury, New Zealand. Green shading indicates areas

of exotic plantation forests.
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S2 Fig. Separator trap used in study.
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S3 Fig. Average catch per trap per hour as a function of maximum hourly temperature.

Red symbols indicate the maximum trap catch per interval, solid blue symbols represent

model outliers with a Cook’s distance > 1, and open blue symbols indicate suspect trap catch

removed from analysis (see results). The adjusted R2 provides an estimate of the variance

explained by the non-linear curve fitting and are only provided when a non-linear response is

identified.

(PDF)

S4 Fig. Average catch per trap per hour as a function of photon flux density and relative

humidity. Red symbols indicate the maximum trap catch per interval, solid blue symbols rep-

resent model outliers with a Cook’s distance < 1, and open blue symbols indicate suspect trap

catch removed from analysis (see results). Model predictions are only shown when a signifi-

cant relationship was present between the predictor and response variable. The adjusted R2

provides an estimate of the variance explained by the non-linear curve fitting and are only pro-

vided when a non-linear response is identified.

(PDF)

S5 Fig. Average catch per trap per hour as a function of wind speed. Red symbols indicate

the maximum trap catch per interval, solid blue symbols represent model outliers with a

Cook’s distance < 1, and open blue symbols indicate suspect trap catch removed from analysis

(see results). Model predictions are only shown when a significant relationship was present

between the predictor and response variable. The adjusted R2 provides an estimate of the vari-

ance explained by the non-linear curve fitting and are only provided when a non-linear
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fourth site was on a flat, recently clear-felled site in McLeans Forest at 59 m elevation. As

recent clearfells all sites had no limited to no forest structure, i.e., newly planted sites with 0.3

m seedlings or young trees up to 0.7 m.
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S5 Table. Conditional probability tables for each node in the Bayesian network model of
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Table S1: Location of individual traps in the four study sites 
Two sites were established in Ashley Forest, the first on McGibbons Rd in a recently clear-felled 
stand with a predominant southeast aspect at 300 m elevation. The second site was on Mt Grey 
Rd also in a recently clear-felled stand, but with a predominantly eastern aspect at 381m 
elevation. The third site was on a flat, recently clear-felled site in the West Melton Forest Rd at 
104 m elevation. The fourth site was on a flat, recently clear-felled site in McLeans Forest at 59 
m elevation. As recent clearfells all sites had no limited to no forest structure, i.e., newly planted 
sites with 0.3 m seedlings or young trees up to 0.7 m.  
 

Forest Location Forest  
Compartment 

Harvest 
Year NZTM East NZTM North 

Ashley Forest McGibbons Rd 29 2012 1562257 5219568 

Ashley Forest McGibbons Rd 29 2012 1562274 5219605 

Ashley Forest McGibbons Rd 29 2012 1562216 5219563 

Ashley Forest McGibbons Rd 29 2012 1562232 5219536 

Ashley Forest Mt Grey Rd 62 2012 1562429 5222459 

Ashley Forest Mt Grey Rd 62 2012 1562427 5222418 

Ashley Forest Mt Grey Rd 62 2012 1562415 5222496 

Ashley Forest Mt Grey Rd 62 2012 1562390 5222467 

West Melton Thompsons Rd 12 2012 1547946 5187228 

West Melton Thompsons Rd 12 2012 1547905 5187228 

West Melton Thompsons Rd 12 2012 1547948 5187188 

West Melton Thompsons Rd 12 2012 1547985 5187227 
McLean's 

Island Norton Ave 28 2011 1555927 5188432 

McLean's 
Island Norton Ave 28 2011 1555887 5188427 

McLean's 
Island Norton Ave 28 2011 1555930 5188393 

McLean's 
Island Norton Ave 28 2011 1555966 5188427 

 
 



Table S2. Title and description of nodes used in Bayesian network models of Hylurgus 
ligniperda, H. ater and Arhopalus ferus flight activity. N/A = the node does not pertain to the 
species model. 
 
Node title Node description States 
  Hylurgus 

ligniperda 
Hylastes ater Arhopalus 

ferus 
Flight 
 
 

The occurrence of flight during that hour. Yes 
No 

Yes 
No 

Yes 
No 

Day of year 
 
 
 
 

The day of the year was expressed as a 
decimal (001-366). 
Because the sampling occurred across 
three discontinuous periods we incorporate 
the day of the year as a measure of the 
time of year to indicate if there are 
seasonal differences to the flight activity. 
  

<344 
>=344 

<41 
>=41 

<14 
>14 to 41 
>41 to 325 
>=325 

Maximum 
temperature (C) 

The maximum temperature recorded 
during the hour. Measurements during the 
hour were taken every minute. 

<12.3 
>12.3 to 14.6 
>14.6 to 17.5 
>=17.5 

<14.0 
>14.0 

<12.6 
>=12.6 

Photon flux density 
(µmol photons 
m−2s−1) 
 

Measure of the average photons in the 
400-700nm range per square metre per 
second during the sampling hour. The 
average is of observations taken every 
minute. 

<0.1 
>0.1 to 565 
>565 to 1704 
>1704 

N/A <0.23 
>=0.23 

Rainfall (mm/hr) 
 

Cumulative rainfall across the sampling 
hour. 

<0.1 
>=0.1 

N/A N/A 

Relative humidity 
(%) 
 

The average relative humidity calculated 
from minute observations during the hour 

<82 
>82 to 93 
>=93 

N/A N/A 

Temperature range 
(C) 
 

The range (in °C) between the maximum 
and minimum temperatures recorded 
during the sampling hour. Measurements 
during the hour were taken every minute. 
 

<0.91 
>=0.91 

<0.90 
>=0.90 

<1.1 
>=1.1 

Time since sunrise 
(mins) 
 
 
 
 
 
 

The time in minutes since sunrise as 
measured from the start of the sampling 
hour. For example, if sunrise was at 
5:50am, the trap hour beginning at 6am 
would have a value of -10 minutes, 
however the 5am trap hour would have a 
value of 50 minutes.  

<19 
>19 to 375 
>375 to 891 
>=891 

<33 
>33 to 289 
>289 to 735 
>735 to 952 
>=952 

N/A 

Time since sunset 
(mins) 
 
 
 
 
 
 

The time in minutes since sunset as 
measured from the start of the sampling 
hour. For example, if sunset was at 
8:30pm, the trap hour beginning at 8pm 
would have a value of -30 minutes, 
however the 9pm trap hour would have a 
value of 30 minutes. 

<11 
>11 to 498 
>498 to 589 
>=589 

<-47 
>-47 to 1221 
>=1221 

<-20 
>-20 to 6 
>6 to 40 
>40 to 65 
>65 to 191 
>191 to 373 
>373 

Wind speed (m-1s-
1) 

Average wind speed during the hour, 
calculated from minute observations.  

<0.9 
>0.9 to 4.1 
>=4.1 

<3.3 
>=3.3 

<4.2 
>=4.2 

 
 



Table S3. Conditional probability tables for each node in the Bayesian network model of 
Hylurgus ligniperda flight activity as discretized from case data using the expectation 
maximization algorithm 
 
 
Table S3A. Conditional probability table for node Day of year 
 

Flight  
Outcome  

< 344 >= 344 
Yes 0.970938 0.029062 
No 0.876216 0.123784 

 
 
Table S3B. Conditional probability table for node relative humidity (%) 
 

Flight Maximum 
Temperature 

Outcome  
< 82 >82 to 93 >= 93 

Yes < 12.3 0.466667 0.333333 0.200000 
Yes >12.3 to 14.6 0.792453 0.188679 0.018868 
Yes >14.6 to 17.5 0.848958 0.140625 0.010417 
Yes >= 17.5 0.970954 0.029046 2.07E-08 
No < 12.3 0.374411 0.378336 0.247253 
No >12.3 to 14.6 0.679849 0.169491 0.150659 
No >14.6 to 17.5 0.649958 0.252297 0.097744 
No >= 17.5 0.970644 0.026165 0.003191 

 
 

Table S3C. Conditional probability table for node temperature range (°C) 
 

Flight Relative  
humidity 

Outcome  
< 0.91 >= 0.91 

Yes < 82 0.091703 0.908297 
Yes >82 to 93 0.393443 0.606557 
Yes >= 93 0.888888 0.111112 
No < 82 0.192201 0.807799 
No >82 to 93 0.587761 0.412239 
No >= 93 0.718202 0.281798 
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Table S3D. Conditional probability table for node rainfall (mm/hr) 
 

Flight Relative 
humidity 

Outcome  
< 0.1 >= 0.1 

Yes < 82 0.983988 0.016012 
Yes >82 to 93 0.934426 0.065574 
Yes >= 93 0.777777 0.222223 
No < 82 0.978365 0.021635 
No >82 to 93 0.886348 0.113652 
No >= 93 0.758772 0.241228 

 
 

Table S3E. Conditional probability table for node maximum temperature (°C) 
 

Flight Day of year 
Outcome  

< 12.3 >12.3 to 
14.6 

>14.6 to 
17.5 >= 17.5 

Yes < 344 0.039456 0.066667 0.244898 0.648979 
Yes >= 344 0.045455 0.181818 0.545454 0.227273 
No < 344 0.381021 0.157028 0.198568 0.263384 
No >= 344 0.532319 0.234474 0.111534 0.121673 

 
 
Table S3F. Conditional probability table for node time since sunrise (mins) 
 

Flight Time since sunset 
(mins) 

Outcome  

< 19 >19 to 375 >375 to 891 >= 891 
Yes < 11 1.75E-07 1.75E-07 0.947368 0.0526317 
Yes >11 to 498 4.76E-07 4.76E-07 0.142857 0.857142 
Yes >498 to 589 0.944443 5.56E-07 5.56E-07 0.055556 
Yes >= 589 0.003026 0.564296 0.432678 1.51E-08 
No < 11 3.00E-08 3.00E-08 0.729730 0.27027 
No >11 to 498 0.040098 4.09E-09 0.078969 0.880933 
No >498 to 589 0.600575 0.014368 2.87E-08 0.385057 
No >= 589 0.041551 0.404432 0.542013 0.0120037 
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Table S3G. Conditional probability table for node Photon flux density (µmol photons m−2s−1) 
 

Flight Maximum 
Temperature (°C) 

Outcome  

< 0.1 >0.1 to 565 
>565 to 

1704 >= 1704 
Yes < 12.3 0.366666 0.433333 0.200000 3.33E-07 
Yes >12.3 to 14.6 0.094340 0.584905 0.320755 1.89E-07 
Yes >14.6 to 17.5 0.062500 0.421875 0.484375 0.031250 
Yes >= 17.5 0.035270 0.331950 0.547718 0.0850623 
No < 12.3 0.490188 0.434851 0.074961 3.92E-09 
No >12.3 to 14.6 0.390772 0.369115 0.230697 0.0094162 
No >14.6 to 17.5 0.342523 0.333333 0.279866 0.0442774 
No >= 17.5 0.155073 0.228462 0.412891 0.203574 

 
 
Table S3H. Conditional probability table for node Wind speed (m-1s-1) 
 

Flight Wind speed (m -1s-

1) 

Outcome  

< 0.9 >0.9 to 4.1 >= 4.1 

Yes < 0.1 0.244444 0.600000 0.155556 
Yes >0.1 to 565 0.066667 0.789474 0.143860 
Yes >565 to 1704 0.005263 0.794737 0.200000 
Yes >= 1704 2.13E-07 0.553191 0.446808 
No < 0.1 0.227018 0.598187 0.174795 
No >0.1 to 565 0.108551 0.651307 0.240142 
No >565 to 1704 0.010578 0.504937 0.484485 
No >= 1704 2.62E-08 0.319372 0.680628 

 
Table S3I. Conditional probability table for node time since sunset (mins) 
 

Flight 
Photon flux 

density (µmol 
photons m −2s−1) 

Outcome 

< 11 >11 to 498 >498 to 589 >= 589 

Yes < 0.1 0.622222 0.377778 2.22E-07 2.22E-07 
Yes >0.1 to 565 0.101754 0.0140351 0.0631579 0.821053 
Yes >565 to 1704 2.63E-08 2.63E-08 2.63E-08 1 
Yes >= 1704 2.13E-07 2.13E-07 2.13E-07 0.999999 
No < 0.1 0.0984031 0.866638 0.0276219 0.00733708 
No >0.1 to 565 0.0465219 0.193177 0.125831 0.634471 
No >565 to 1704 7.05E-09 7.05E-09 7.05E-09 1 
No >= 1704 2.62E-08 2.62E-08 2.62E-08 1 

 
 
 



 
Table S4. Conditional probability tables for each node in the Bayesian network model of 
Hylastes ater flight activity as discretized from case data using the expectation maximization 
algorithm. 
 
Table S4A. Conditional probability table for node flight 
 

Flight  
Yes 0.019767 
No 0.980233 

 
 
Table S4B. Conditional probability table for node temperature range (°C) 
 

Flight Time since 
sunrise (mins) 

Outcome 
< 0.9 >= 0.9 

Yes < 33 0.666666 0.333334 
Yes 33 to 289 0.057693 0.942307 
Yes 289 to 735 0.190477 0.809524 
Yes 735 to 952 0.192308 0.807692 
Yes >= 952 0.307693 0.692307 
No < 33 0.262525 0.737475 
No 33 to 289 0.133112 0.866889 
No 289 to 735 0.183827 0.816173 
No 735 to 952 0.530144 0.469857 
No >= 952 0.520057 0.479943 

 
 
 

Table S4C. Conditional probability table for node wind speed (m-1s-1) 
  

Flight Time since 
sunrise (mins) 

Outcome  
< 3.3 >= 3.3 

Yes < 33 0.666666 0.333334 
Yes 33 to 289 0.884615 0.115385 
Yes 289 to 735 0.619048 0.380953 
Yes 735 to 952 0.769231 0.230769 

Yes >= 952 0.999999 7.69E-07 
No < 33 0.733467 0.266533 
No 33 to 289 0.535774 0.464226 
No 289 to 735 0.349788 0.650212 
No 735 to 952 0.668899 0.331100 
No >= 952 0.756017 0.243983 
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Table S4D. Conditional probability table for node Day of year 
 

Flight Maximum 
Temperature (°C) 

Outcome  
< 41 >= 41 

Yes < 14 0.473684 0.526316 
Yes >= 14 0.803279 0.196721 
No < 14 0.166418 0.833582 
No >= 14 0.532014 0.467986 

 
 
Table S4E. Conditional probability table for node maximum temperature (°C) 
 

Flight Time since 
sunrise (mins) 

Outcome  
< 14 >= 14 

Yes < 33 3.33E-06 0.999997 
Yes 33 to 289 0.019231 0.980769 
Yes 289 to 735 0.238096 0.761904 
Yes 735 to 952 0.134615 0.865385 
Yes >= 952 0.461538 0.538462 
No < 33 0.625251 0.374750 
No 33 to 289 0.318636 0.681364 
No 289 to 735 0.283028 0.716972 
No 735 to 952 0.588517 0.411483 
No >= 952 0.680038 0.319962 

 
 
Table S4F. Conditional probability table for node maximum temperature (°C) 
 

Flight Time since 
sunset (mins) 

Outcome  

< -47 -47 to 1221 >= 1221 

Yes  0.085106 0.687943 0.22695 
No  0.01373 0.887729 0.098541 

 
 
Table S4G. Conditional probability table for node time since sunrise (mins) 
 

Flight 
Time since  

sunset 
(mins) 

Outcome 

< 33 33 to 289 289 to 735 735 to 952 >= 952 

Yes < -47 8.33E-07 8.33E-07 8.33E-07 0.999997 8.33E-07 
Yes -47 to 1221 0.030928 0.536082 0.134021 0.164948 0.134021 
Yes >= 1221 3.12E-07 3.12E-07 0.250000 0.749999 3.12E-07 
No < -47 1.04E-07 1.04E-07 0.072917 0.927083 1.04E-07 
No -47 to 1221 0.080393 0.193652 0.286773 0.097793 0.341389 
No >= 1221 1.45E-08 1.45E-08 0.493469 0.506531 1.45E-08 

 
 
 



Table S5. Conditional probability tables for each node in the Bayesian network model of 
Arhopalus ferus flight activity as discretized from case data using the expectation maximization 
algorithm. 
 
Table S5A. Conditional probability table for node  
 

Flight  
Yes 0.0266629 
No 0.973337 

 
 

Table S5B. Conditional probability table for node time since sunrise (mins) 
 

Flight  

 Time since 
sunset 
(mins) 

Outcome 

< -20 -20 to 6 6 to 40 40 to 65 65 to 191 191 to 373 >= 373 

Yes  0.01579 0.294737 0.052632 0.210526 0.247368 0.131579 0.047368 
No  0.028691 0.013264 0.02105 0.014562 0.087226 0.128604 0.706603 
 

 
Table S5C. Conditional probability table for node Photon flux density (µmol photons m−2s−1) 
 

Flight Time since  
sunset (mins) 

Outcome  
< 0.23 >= 0.23 

Yes < -20 0.999997 3.33E-06 
Yes -20 to 6 ~1 1.79E-07 
Yes 6 to 40 0.899999 0.100001 
Yes 40 to 65 ~1 2.50E-07 
Yes 65 to 191 ~1 2.13E-07 
Yes 191 to 373 ~1 4.00E-07 
Yes >= 373 1.11E-06 0.999999 
No < -20 0.492462 0.507538 
No -20 to 6 0.978261 0.021739 
No 6 to 40 0.979452 0.020548 
No 40 to 65 0.990099 0.009901 
No 65 to 191 0.971901 0.028099 
No 191 to 373 0.980942 0.019058 
No >= 373 0.079372 0.920628 

 
 

Table S5D. Conditional probability table for node wind speed (m-1s-1) 
 

Flight Maximum 
temperature (C) 

Outcome  
< 4.2 >= 4.2 

Yes < 12.6 0.888888 0.111111 
Yes >= 12.6 0.877907 0.122093 
No < 12.6 0.831106 0.168894 
No >= 12.6 0.657473 0.342527 
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Table S5E. Conditional probability table for node maximum temperature (°C) 
 

Flight 
Photon flux 

density (µmol 
photons m −2s−1) 

Outcome  
< 12.6 >= 12.6 

Yes < 0.23 0.1 0.9 
Yes >= 0.23 1.00E-06 0.999999 
No < 0.23 0.593955 0.406045 
No >= 0.23 0.287556 0.712444 

 
 
Table S5F. Conditional probability table for node Day of year 
 

Flight Maximum 
temperature (°C) 

Outcome  

< 14 14 to 41 41 to 325 >= 325 
Yes < 12.6 5.56E-07 0.444444 5.56E-07 0.555555 
Yes >= 12.6 0.040698 0.796511 5.81E-08 0.162791 
No < 12.6 3.71E-09 0.133259 0.44098 0.425761 
No >= 12.6 0.001179 0.489863 0.214286 0.294672 

 
 
Table S5G. Conditional probability table for node temperature range (°C) 
 

Flight Time since  
sunset (mins) 

Outcome  
< 1.1 >= 1.1 

Yes < -20 0.333334 0.666666 
Yes -20 to 6 0.678571 0.321429 
Yes 6 to 40 0.200001 0.799999 
Yes 40 to 65 0.750000 0.250000 
Yes 65 to 191 0.638298 0.361702 
Yes 191 to 373 0.440000 0.560000 
Yes >= 373 0.333334 0.666666 
No < -20 0.59799 0.40201 
No -20 to 6 0.804348 0.195652 
No 6 to 40 0.582192 0.417808 
No 40 to 65 0.861386 0.138614 
No 65 to 191 0.657851 0.342149 
No 191 to 373 0.600897 0.399103 
No >= 373 0.314426 0.685574 

 
 



 

 
Figure S1. Location of study sites in Canterbury, New Zealand. Green shading indicates areas 
of exotic plantation forests.  
 



 
Figure S2. Separator trap used in study 
 



 

Fig S3. Average catch per trap per hour as a function of maximum hourly temperature.  

Red symbols indicate the maximum trap catch per interval, solid blue symbols represent model 

outliers with a Cook’s distance > 1, and open blue symbols indicate suspect trap catch removed 

from analysis (see results). The adjusted R2 provides an estimate of the variance explained by 

the non-linear curve fitting and are only provided when a non-linear response is identified. 

 



 

Fig S4. Average catch per trap per hour as a function of photon flux density and relative 

humidity.  

Red symbols indicate the maximum trap catch per interval, solid blue symbols represent model 

outliers with a Cook’s distance < 1, and open blue symbols indicate suspect trap catch removed 

from analysis (see results). Model predictions are only shown when a significant relationship 

was present between the predictor and response variable. The adjusted R2 provides an 

estimate of the variance explained by the non-linear curve fitting and are only provided when a 

non-linear response is identified. 

 



 

Fig S5. Average catch per trap per hour as a function of wind speed.  

Red symbols indicate the maximum trap catch per interval, solid blue symbols represent model 
outliers with a Cook’s distance < 1, and open blue symbols indicate suspect trap catch removed 
from analysis (see results). Model predictions are only shown when a significant relationship 
was present between the predictor and response variable. The adjusted R2 provides an 
estimate of the variance explained by the non-linear curve fitting and are only provided when a 
non-linear response is identified. 
 



 
Figure S6. Mean hourly meteorological conditions as a function of the time of day averaged 
across all sites. The grey polygon defines the standard error of the mean for each hourly 
measurement. 
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