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A B S T R A C T   

Traditional population viability analysis (PVA) does not address the degree of measurement error or spatial and 
temporal variability of vital rate parameters, potentially leading to inappropriate conservation decision-making. 
We provide a methodology of applying Bayesian network (BN) modeling to PVA addressing these considerations, 
particularly for species with complex stage-class structures. We provide examples of three species from eastern 
Australia - hip pocket frog (Assa darilingtoni), squirrel glider (Petaurus norfolcensis) and giant burrowing frog 
(Heleioporus australiacus), comparing traditional matrix-based PVA with BN model analyses of mean stage 
abundance, quasi-extinction probability, and interval threshold extinction risk. Both approaches project similar 
population sizes, but BN PVA gave more clearly identifiable thresholds of population changes and extinction 
levels. The PVA BN uniquely represents complex stage-class structures and in a single network, including vari
ation and uncertainty propagation of vital rates, to better inform conservation management decisions.   

1. Introduction 

A building block of conservation is ensuring the recovery and 
continued viability of species populations, particularly at-risk species (e. 
g. Schultz and Hammond 2003). Decision-makers often rely on de
mographic projection models to gauge the potential outcomes of man
agement actions affecting the viability – size, trend, and probability of 
persistence – of populations (Saunders et al., 2018). These models are 
subject to the uncertainty in the input data. Failure to account for un
certainty can result in incorrect decisions with dire consequences for 
population conservation outcomes. 

Population viability analysis (PVA) is a useful method for the 
quantitative projection of the size of a biological population under 
scenarios of specified survival and reproductive vital rates. The projec
tion determines probabilities of decline or extinction over a specified 
time horizon (Shaffer 1990). PVAs have been central to population 
conservation for decades (Soule 1987; Gerber and González-Suárez 
2010; Chirakkal and Gerber 2010; Saunders et al., 2018). PVAs can be 
conducted aspatially based on demographic vital rates with the use of a 
standard Leslie matrix life-table analysis and simulation projection 
models (Kajin et al., 2012), using programs such as Vortex and RAMAS 
(Lindenmayer et al., 2000; LaRue and Nielsen 2016). PVAs also can be 
spatialised with individual-based simulation models (Watkins and Rose 
2017) such as HexSim (Schumaker and Brookes 2018) or through 

spatially and temporally explicit population simulations (Visitin et al., 
2020). 

Results of PVAs are used in management (e.g., Schtickzelle et al., 
2005) to help identify minimum viable population sizes to meet con
servation objectives (Reed et al., 2003), to evaluate potential success of 
reintroductions (Licht et al., 2017), to determine potential impacts on 
populations from environmental disturbances and anthropogenic 
stressors (Tuma et al., 2016), and for informing other management ob
jectives (e.g., Klavitter et al., 2003; Schultz and Hammond 2003). PVAs 
are also used to determine the probability of a population falling below a 
particular non-zero size, known as a quasi-extinction level (Ginzburg 
et al., 1982). Such probabilities are calculated as the proportion of 
replicate model runs with n below a specified quasi-extinction level, at a 
particular point in time or over a given duration of time. PVAs can also 
be used to project potential impacts of demographic and environmental 
stochasticity including random variation in vital rates of survivorship 
and reproduction due to environmental variation (Engen et al., 2005; 
Fox 2005). 

A fundamental aspect of uncertainty to consider is the degree of 
measurement error and spatial and temporal variability of vital rate 
parameters (age- or stage-class survivorship and reproduction), which 
existing PVAs generally do not address. A construct that holds promise 
for addressing both types of uncertainty in an efficient manner is that of 
Bayesian network (BN) modeling. BNs are directed acyclic graphs that 
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link variables with conditional probabilities (Koski and Noble, 2011). 
BNs have been used in a very wide array of environmental, ecological, 
and conservation problems (Pourret et al., 2008) including determining 
the IUCN (International Union for Conservation of Nature) red-list of 
threatened species categories (Newton 2010), and evaluating impacts of 
habitat conditions, disturbances, and stressors on populations of fish 
(Vilizzi et al., 2013), carnivores (Johnson et al., 2013), and marine 
mammals (Jay et al., 2011). BNs have been used to evaluate general 
population responses to habitat conditions, threats, and management 
considerations (e.g., Brown and Ferguson 2019; Zeigler et al., 2019). 
Although Bayesian statistical (non-network) approaches have been used 
with PVAs for some time (Goodman 2002; Saunders et al., 2018; Serv
anty et al., 2014; Maunder 2004; McCarthy et al., 2001), BNs have not 
yet been developed as PVAs per se, explicitly depicting age- or 
stage-class vital rates. 

The structure of BNs is flexible and lends itself to modeling the event 
space of population stage classes to track cohort strength over time (e.g., 
Johnson et al., 2010) mimicking and extending traditional and 
non-network Bayesian PVA constructs. Traditional PVAs use repeat 
sampling within distributions among stage classes, such as with Markov 
chain Monte Carlo (MCMC) algorithms (Gross et al., 2002). BNs can 
propagate uncertainty throughout the model, as do Bayesian PVAs 
(Saunders et al., 2018). However, BNs are more flexible in their struc
ture and can better depict complex life stages such as substages less than 
a single time step in the model, for example the egg and juvenile stage of 
most birds. This aspect of BNs allows for stage-specific management 
interactions to be tested across the life cycle of species. In turn, this 
would result in improved decision-making for conservation. Further, 
BNs can help solve the quandary posed by Fox and Kendall (2002) who 
suggested that systematic variation, rather than random variation, 
among individuals leads to overestimation of extinction risk in pop
ulations. That is, BNs can include probability distributions of many 
forms as explicit depictions of random variation in vital rates. Whereas 
traditional PVA modeling at best typically includes systematic variation 
in vital rates, although recent advances may include such considerations 
in non-network Bayesian implementations of PVA (Saunders et al., 
2018). 

Here, we provide a framework, methodology, and demonstration of 
applying BN modeling to PVA. The framework better accounts for 
variability and uncertainty in demographic vital rates and provides a 
more flexible framework than existing matrix or simulation approaches 
for species with complex stage-class structures. We first develop the 
concepts, then provide the computational modeling structure, explore 
three species examples, and conclude with a review of the value and 
limitations of the approach and future development needs. 

2. Methods 

2.1. Study species 

Three species were used for modelling population viability in this 
study - the hip pocket frog (Assa darilingtoni; hereafter Assa), squirrel 
glider (Petaurus norfolcensis; hereafter Petaurus) and the giant burrowing 
frog (Heleioporus australiacus; hereafter Heleioporus). The three species 
were chosen due to the availability of population viability models (Keith 
et al., 2014; Penman et al., 2015; H. Kujala, N. Cadenhead, and L. 
O’Connor, University of Melbourne, Australia, pers. comm.) and the 
life-stages of the species. Both Assa and Petaurus have life histories that 
fit within the traditional PVA model, that is, they have life histories with 
annual life stages such as juvenile, young adult, mature adult. 

The three species are found in forests and woodlands of south-eastern 
Australia (Fig. 1). Assa occurs in moist rainforests and eucalypt forests of 
the coastal escarpment, generally in areas about 600m elevation (Keith 
et al., 2014). It lays a small number of large eggs and has a relatively 
quick tadpole period (40 days) after which they emerge as sub-adults. 
Petaurus occurs throughout forests and woodlands of eastern Australia, 

although much of its habitat has been cleared for agriculture (van der 
Ree 2002). Petaurus is a hollow-dependent marsupial species, and its 
population ecology has been well studied (Quin 1995; van der Ree 2002; 
Smith 2003). Heleioporus is a ground-dwelling forest frog (Lemckert and 
Brassil 2003; Littlejohn and Martin 1967) with a complex life-cycle 
where adults move to breeding sites to lay eggs which hatch into tad
poles within two days to a week. These individuals can remain in the 
tadpole stage for three months to two years (Daly 1996; Penman et al., 
2004); after transformation, the juveniles disperse into the forest before 
returning to the breeding population site up to several years later 
(Penman et al., 2008). Heleioporus has greater complexity in its life 
history than the other two example species explored here that results in 
a traditional PVA needing to combine individual stages into composite 
stages. Within a single year, an individual can advance from egg to 
tadpole and finally to juvenile frog stages. All of these stages are subject 
to different survival rates, variations, and risks. Previous studies have 
combined these stages into a single stage in the Leslie matrix, thereby 
making it difficult to disentangle the effects of management on the in
dividual stages (Penman et al., 2015). 

2.2. Population viability modelling approach 

Two approaches to PVA were considered in this study, each being an 
aspatial representation of a single population. The first was the tradi
tional Leslie matrix approach implemented in the RAMAS GIS® program 
(Version 5 Akçakaya and Root 2005). The Leslie matrix approach di
vides the population into groups based on age classes. Using estimates of 
survival and fecundity, matrix multiplication is used to model the 
changes in each age class of a population over time in discrete time steps. 
This approach is the foundation for PVA in a range of software packages 
(Lindemayer and Burgman (2005)). Although RAMAS GIS links spatial 
distribution data with PVA to estimate population extinction risk, only 
the basic RAMAS functions are used in this study for comparison. The 
second approach was to develop non-parametric continuous Bayesian 
networks (BNs) (Hanea et al., 2015) using Uninet software v2.97.16 (htt 
ps://lighttwist-software.com/uninet, accessed August 2020) operated 
via R version 3.4.4 (R-Development Core Tea 2007) with the RDCOM
Client package version 0.93-0 (www.omegahat.net/RDCOMClient/). 
Discrete BNs are more commonly used in environmental decision 

Fig. 1. Distribution records for the three species used in the study. Petaurus 
(orange), Assa (green), Heleioporous (purple). Source: Atlas of Living Australia 
(www.ala.org.au), accessed 5 August 2020. 
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making (Aguilera et al. 2010, 2011; Johnson et al., 2010; Marcot et al., 
2001; Newton 2010; Penman et al., 2020). In discrete BN models, the 
nodes represent discrete random variables where the model specifies 
marginal distributions for nodes with no parents (that is, that lack direct 
antecedents), and conditional probability tables for all child nodes (that 
is, with direct antecedents). Because all variables in our study were 
continuous, we chose to use the relatively new approach of 
non-parametric continuous BNs which associates nodes with random 
variables for which no parametric marginal distribution assumption is 
made (Hanea et al., 2015) and arcs (links between nodes) are parame
terized by conditional rank correlations using normal copulas (Nelsen, 
2007). It is well beyond the scope of this paper to describe 
non-parametric continuous BNs in detail, but we refer readers to Hanea 
et al. (2015) who provide extensive details of the method. Our two PVA 
approaches are described more fully below. 

RAMAS matrix models were developed based on available model 
data (Keith et al., 2014; Penman et al., 2015). All matrix models are 
female-only. The Leslie matrix structures, including vital rate mean and 
standard deviation values, and initial abundances used in the RAMAS 
models of each species, are presented in Supplementary A. The life 
stages, vital rates, and their standard deviations are the same for the 
matrix model and the BN models. Vital rates as implemented in the 
RAMAS and BN models varied between life stages and also varied 
annually because of demographic stochasticity. Each RAMAS model was 
run for up to 100 years. The time period was chosen to replicate studies 
using two of the study species (Keith et al., 2014; Penman et al., 2015). 
To examine the effects of variations in vital rates, we ran both 100 and 
1000 replicates for each species. Density dependence was represented by 
a ceiling model (Akçakaya and Root 2005) for Assa based on Keith et al. 
(2014), and by a ceiling model for Heleioporus based on Penman et al. 
(2015). There was no density dependence provided for Petaurus and this 
was not relevant as the population shrank to extinction and is therefore 
not expected to be influenced by density. For simplicity, we only 
modeled a single population for all species and therefore did not include 
dispersal or patch recolonization. 

BN models were designed to represent stage transition dynamics for 
a single year. Nodes in the BN models represent vital rates and numbers 
of individuals of each life stage, and arcs represent the directional in
fluence of each source or affector node (termed "parent node") to their 
immediate outcomes (or "child nodes") (Nyberg et al., 2006). In BN 
models, distributions in the child nodes are determined through equa
tions relating conditional influences of the parent nodes. For simplicity, 
we used Gaussian distributions requiring only empirically-based mean 
values of numbers and vital rates, and their standard deviations to 
represent demographic stochasticity. We elected to use Gaussian dis
tributions for a direct comparison with the RAMAS model, but noted 
that Uninet also allows for a diverse range of parametric, non-parametric 
and empirical distributions which could significantly expand the 
application of our approach. The BN models represent the full life stage 
structure of each species. When run, the models are looped so that the 
output distribution becomes the input distribution in the following year, 
thereby carrying the uncertainty forward. 

The BN model for Assa is presented in Fig. 2. This model works for a 
single year and is iterated over 100 years to get outputs comparable with 
RAMAS. Nodes are included to represent the number of individuals 
(prefix ‘N’) per stage for either the start of the year ‘Y0’ or at the end of 
the year ‘Y1’. For example, N1Y0 represents the number of individuals in 
stage 1 at the start of the year, whereas N1Y1 represents the number of 
individuals in stage 1 at the end of the year. Transition rates represent 
both survival and fecundity. Transition rates are represented by nodes 
prefixed with ‘T’ and the numbers representing the rates from stage x to 
stage y. For example, T.1.2 represents the transition rate for stage 1 to 
stage 2. Numbers for each stage at the end of the year are the product of 
the number at the start of the year and the transition rate. In the case 
where multiple stages breed or contribute to a life stage, these values are 
then added to determine the total number for that stage for the following 
year. At the end of each year, distributions for all Y1 nodes are used as 
Y0 nodes for the following year. If values are calculated to fall below 0, 
they are truncated to 0. These calculations were undertaken in R and the 
resultant distribution returned to the Uninet model. Returned 

Fig. 2. UNINET Bayesian Network for Assa. Nomenclature for the nodes: ‘NAYB’ is the number of individuals in Stage A in Year B; and T.C.D is the transition rate 
from stage C to stage D. Nodes presented as histograms are inputs, and those as ellipses are the equations. Equations all take the form of N(x+1)Y1=NxY0*Tx.(x+1). The 
exception is N3Y1 which simply sums N23Y1 and N33Y1. 
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distributions are then no longer considered Gaussian distributions; 
rather, they are considered empirical distributions derived from the 
model. 

A more complex model was developed for Heleioporus to demonstrate 
the capacity of the BN modelling approach (Fig. 3). Traditional matrix 
model PVAs require each stage to be of a similar time step, often annual. 
In the BN approach for Heleioporus, we can include transition rates 
across multiple stages within a single modeling cycle, as well as the 
annual transitions. Heleioporus lays eggs which hatch within a week 
(Penman et al., 2004); this was included in nodes prefixed with ‘NEg’. 
The tadpole phase can last six weeks to two years (Daly 1996) and 
therefore we included two stages of tadpoles – those that meta
morphosed in a single season prefixed with ‘T1’ and those that took two 
seasons ‘T2’. The species then remains in the transformed, juvenile 
phase for approximately three years, represented by nodes prefixed with 
‘NJ’. Juveniles then become sub-adults with lower breeding rates (nodes 
prefixed with ‘NSA’) and then move to larger adults with higher 
breeding rates – nodes prefixed with ‘NLA’. individuals were assumed to 
survive a maximum of 11 years (Penman et al., 2015). We do not vary 
survival rates within each stage as there is no evidence to support such 
an approach (Penman et al. 2004, 2015). 

2.3. Analysis 

We used three metrics to compare the two modelling approaches: 
mean stage abundance, quasi-extinction probability and interval 
threshold extinction probability. Mean stage abundance is the abundance 
of each stage per year, as calculated from the RAMAS 100- and 1000- 
replicate results, and from the Uninet BN results (hereafter Uninet). 
Quasi-extinction probability is the probability that the population will fall 
below a threshold population size. We scaled populations to a threshold 
of 1.0 to allow for simple comparisons within and between species. The 
Uninet model uses a distribution of values to derive the extinction 
probability as the proportion of values below 1. The interval threshold 

extinction risk gives the probability that population size will fall below a 
threshold of abundance at least once during the simulation. In the 
Uninet model, we calculated this using the proportion of the distribution 
that fell below the range of abundances during the simulation. 

We assessed the three modeling constructs – RAMAS with 100 rep
licates, RAMAS with 1000 replicates, and Uninet – based on graphical 
comparisons. Mean and uncertainty values were examined with non- 
overlapping 95% confidence intervals (RAMAS), and with 95% cred
ible intervals (Uninet) that are equivalent to significance at the p = 0.05 
level for a two-sample t-test (Walshe et al., 2007). Here we make the 
assumption that the confidence and credible intervals are approximately 
equivalent. Plots are presented for the mean values in the results for 
clarity. 

3. Results 

There was strong agreement with the stage-class abundances of Assa 
and Petaurus across the Uninet and RAMAS 1000 replicate models 
(Fig. 4), with the RAMAS 100 replicate model suggesting a decline over 
the 100 years. The other two models predicted that all three stages of the 
Assa model plateaued around 15 years from the start of the analysis at 
abundance values of 150, 90 and 30 individuals in stages 1, 2 and 3 
respectively. After this point, there was little variation over time with 
any of the three models. The models for Petaurus all predicted extinction 
of the species between 30 and 35 years after the simulation began 
(Fig. 4). There was very little difference in the abundances for each stage 
between the modelling approaches. 

Differences were seen in the Heleioporus model with RAMAS pre
dicting higher abundance values of stage 1 (juveniles) compared to 
Uninet (Fig. 4). In contrast, RAMAS predicted similar abundance values 
of stage 2 (small adults); and Uninet and RAMAS predicted significantly 
lower abundance values of stage 3 (large adults). The Uninet models 
resulted in far narrower variations (SD) in average total population sizes 
for Assa and Petaurus but wider variations in the more complex life 

Fig. 3. UNINET Bayesian network for Heleioporus australaicus. Terminology is as per Fig. 2 with the exception that the stages are Eg = egg, T = tadpole, J = juvenile, 
SA = small adult, LA = large adult. 
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history structure of Heleioporus (Supplementary Material Fig. S1). 
Differences among the quasi-extinction probability estimates 

occurred between the modeling approaches (Fig. 5). All three modeling 
approaches predicted no or very low extinction probabilities for Assa 
over the 100 years, with a maximum value of 0.2% from the RAMAS 

1000 Model. Patterns for Petaurus were similar between the two RAMAS 
approaches but differed with the Uninet approach (Fig. 5). Both RAMAS 
models predicted the quasi-extinction probability to rise from around 10 
to 20 years after the model started, to eventually reaching values of 
approximately 0.9 by 60 years. In contrast, the Uninet model predicted a 

Fig. 4. Comparison of stage abundance levels between RAMAS with 100 and 1000 replicates and UNINET Bayesian network models of a) Assa, b) Petaurus, and c) 
Heleioporus. In the case of Heleioporus, tadpoles are not included in the population size estimates. Note that RAMAS did not provide stage specific variance values. 

Fig. 5. Comparison of quasi-extinction levels between RAMAS with 100 and 1000 replicates and UNINET Bayesian network models for a) Assa and b) Petaurus.  
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zero probability until around 30 years when it switched to a quasi- 
extinction probability of close to 1. No model predicted a quasi- 
extinction probability greater than zero for Heleioporus (thus, not 
included in Fig. 5). 

There were differences among the modelling approaches in the re
sults for the interval threshold extinction risk. RAMAS models of Assa 
populations predicted a rise from a probability value of 0.1 for small 
populations up to 1, at an extinction threshold level of around 300. In 
contrast, the Uninet model predicted a steep threshold between 260 and 
280 where the extinction risk rises from 0 to 1 (Fig. 6). All three ap
proaches for Petaurus predicted interval threshold risk to be 1 for all 
population sizes (Fig. 6). 

Both RAMAS and Uninet resulted in logistic-shaped responses for 
Heleioporus, although the modeling approaches differed in the resulting 
absolute values of population abundance thresholds extinction proba
bilities. RAMAS predicted threshold-extinction risk values starting from 
0.1 and rising to 0.75 at population sizes of approximately 150. Uninet 
predicted extinction risk values of 0 up to population sizes of approxi
mately 30 and rising to an extinction risk of 1 at a population size of 
approximately 100. 

4. Discussion 

We have demonstrated that the PVA BN approach results in essen
tially the same projected overall population sizes resulting from more 
traditional Leslie matrix analysis such as used in RAMAS for the three 
case studies investigated. However, projected sizes of specific life stages 

of some species, e.g., stage 1 of Heleiporus (Fig. 4), may differ between 
the two approaches. The PVA BN approach results in more prominent 
thresholds of population changes and extinction levels, which could 
better determine specific quasi-extinction brinks or minimum viable 
population sizes (Brook et al., 2000; Reed et al., 2003). 

A major difference between the two models was the estimation of the 
extinction risk values. In most cases, the BN approach predicted a 
threshold value where risk switched from 0 to 1, whereas the Leslie 
matrix approach generally predicted a more continuous transition. The 
exception to this was the Helioporus model where similar shaped re
sponses were found, but with the BN predicting extinction at smaller 
population sizes. There are a number of reasons these differences could 
occur. One of the main reasons would be the methods used to calculate 
the values. The Leslie matrix approach selects values randomly from 
distributions and then makes multiple traces, finally averaging across 
the traces to determine values and uncertainties. In contrast, the BN 
approach multiplies distributions to determine the values. Only a single 
“replicate” of the BN is required and therefore it is less subject to sto
chasticity and is more data driven. Greater uncertainty in population 
estimates can also represent demographic stochasticity which can lead 
to a greater probability of extinction under low population sizes 
(Jeppsson and Forslund 2012). The choice of model used and the 
method for dealing with uncertainty (distributions vs replicates) clearly 
influence estimates of population size, extinction and quasi-extinction 
risks and therefore have implications for conservation decision making. 

The BN PVA approach explicitly accounts for variation and uncer
tainty in population vital rates of births and deaths, and for propagation 

Fig. 6. The probability of extinction (y axis) as a function of the minimum threshold population size (x-axis) between RAMAS with 100 and 1000 replicates and 
UNINET Bayesian network models for a) Assa, b) Petaurus, and c) Heleioporus. 
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of that uncertainty across life stages and time periods. This is evident 
through the cycling of empirical distributions between years. As such, it 
can explicitly account for demographic and environmental stochasticity 
and can track relative cohort strengths over time. Bayesian PVA can 
include random deviates of any distributional pattern in defining the 
probability distributions of vital rate values with specified levels of 
uncertainty and variation (Saunders et al., 2018). Whereas the Leslie 
matrix includes only frequentist statistical parameters of variability such 
as standard deviation. Additionally, the influence of external distur
bance events on those probability distributions can be added easily and 
explicitly into a BN PVA model through additional nodes or probabilistic 
sub-models. 

Our approach can also account for complex or overlapping life stages 
in stage-structured populations, i.e multiple stages occurring within one 
age class as defined by a Leslie matrix. This was demonstrated with our 
Heleioporus example potentially having both an egg stage and more than 
one tadpole stage. Other examples include analysis by Aubry et al. 
(2010) for a toad species that can pulse-breed with several successive 
cohorts of eggs and tadpoles within the same season. However, rather 
than the complex set of multiple population matrices resulting from 
their analysis, our BN PVA approach can more simply represent over
lapping life stages and population outcomes in a single network. The BN 
PVA model can also be extended to various time frames representing 
specified numbers of generations. To represent real-world cases, the 
PVA BN can be initialized with empirical abundances of each life stage 
class. Also, the BN PVA approach can be used to combine otherwise 
disparate information sources on population structure and vital rates, 
such as from multiple studies and expert knowledge elicitation, much as 
used in integrated population models (Saunders et al., 2019) but with 
explicit calculations of the sequential propagation of value uncertainties 
in population projections. 

Our PVA BN approach is in the early stages of development and does 
not utilize the full capacity of BNs. In this study, we sought to demon
strate the method rather than definitively summarize the strength of 
BNs. The BN could be expanded beyond the PVA approach here to 
quantify the influence and stochasticity of environmental factors on 
survival and reproduction (Enrght et al., 2014), the role of disturbances 
such as fire that result in increases in population size through germi
nation of soil stored seed banks (Swab et al., 2012) or complex in
teractions with other species by combining two PVA BNs. Furthermore, 
we initialized our model with simple Gaussian distributions however 
any parametric, non-parametric or empirical distribution could be used. 
We do note that it is likely that these steps could potentially be pro
grammed into statistical packages such as R or MATLAB and our 
approach presented is not necessarily limited to BNs. However, the BN 
approach has an existing structure, available software, and a 
well-established literature supporting its use for such approaches. 

We offer several caveats of the PVA BN approach. First, it may be 
difficult in this framework to incorporate density-dependency limita
tions and Allee effects that represent biological constraints to unlimited 
population growth, that can be modeled with time-dynamic logistic 
equations (Cross and Beissinger 2001) or other analytic approaches 
(Carlos and Braumann 2017). Second, our PVA BN modeling framework 
is essentially insensitive to population structures because (1) it remains 
aspatial and (2) is structured for evaluating viability of single pop
ulations rather than multiple populations (Leasure et al., 2019), 
although other non-network Bayesian methods have been used to 
evaluate population structures (Harrison et al., 2011; O’Hara et al., 
2002). Third, our framework does not account for variations in life 
histories among individuals within a population, for example as found in 
some species of Pacific salmonid fishes (Fujiwara 2007). And finally, 
although results of PVA BN projections could be mapped, the structure 
currently is essentially aspatial, but may be a useful complement to 
spatially-explicit individual movement models. The major advantages of 
the PVA BN approach lie in efficiently representing entire stage-class 
structures in a single network and displaying the effect of variation 

and propagation of uncertainty in those classes, representing de
mographic and environmental stochasticity, on projected population 
size and trend. 

Next steps in development of the PVA BN framework could include 
making it spatially explicit (Swab et al., 2012; Penman et al., 2015; 
Schtickzelle and Baguette 2004). Traditional Leslie matrix PVAs tend 
not to be spatially-referenced although packages such as RAMAS seek to 
address this issue. BNs also have that capability whereby results can be 
mapped showing resulting probabilities, uncertainties, and their 
empirical basis or sample sizes (Havron et al., 2017, Wiest et al., 2019). 
Life stages within the PVA BN could be assigned individual spatial oc
currences by modeling them as objects in object-oriented and 
agent-based Bayesian networks (Marcot and Penman 2019), with results 
applied to geographic information systems to map outcomes denoting 
projected population size, trend, and uncertainties. 

5. Conclusions 

Modeling population viability with probability networks provides a 
means of representing age- or stage-class structures and effects of 
random uncertainties in vital rates on population outcomes in a single, 
parsimonious, and efficient network structure rather than, at best, a 
complex set of population matrices. 

Specifically, our PVA BN approach, as implemented here in the BN 
modeling shell Uninet as continuous-variable networks, compares well 
with traditional results calculated with Leslie matrices with the RAMAS 
program. Moreover, the PVA BN approach provides a far more flexible 
structure for explicitly and clearly representing complex life history 
stage classes and the role and influence of disturbances. The PVA BN 
model structure provides probability distributions of the size of each 
stage class and of total population size at each time interval analyzed. 
Such distributions can be used to quickly calculate Bayesian credible 
intervals of stage class, cohort, and population size, including proba
bilities of quasi-extinction rates. 

Our method allows for population modelling for a greater diversity of 
species, particularly those with complex and overlapping life stages. 
Conservation managers can use model outputs to make informed de
cisions over a greater array of species and explicitly accounting for 
environmental and demographic stochasticity and data-driven 
uncertainty. 
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