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ABSTRACT—Habitat models address only 1 component of biodiversity but can be useful in
addressing and managing single or multiple species and ecosystem functions, for projecting
disturbance regimes, and in supporting decisions. I review categories and examples of habitat
models, their utility for biodiversity conservation, and their roles in making conservation de-
cisions. I suggest the use of influence diagrams in structuring causal webs and structural equa-
tion modeling to quantify relations, as a general framework for building models of habitat from
which a known degree of inference can be made to biodiversity variables.
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In the United States, federal land manage-
ment agencies that are focally charged with
managing species’ habitats often are faced with
a dilemma of also providing for biodiversity.
Biodiversity has many definitions and vari-
ables (for example, DeLong 1996; Callicott and
others 1999) although it is generally defined as
the diversity of multiple levels of biological or-
ganization at multiple scales of space and time.
Noss (1990) defined it as an array of composi-
tional, structural, and functional variables at bi-
ological organizational levels ranging across
genes, population and species, and communi-
ties and ecosystems (Table 1). In this paper, I
address how modeling of habitat can serve to
inform and guide management of the fuller
suite of biodiversity variables. My objectives
are to review how habitat modeling can be
structured to represent biodiversity, to quan-
tify the degree to which habitat alone can serve
as a surrogate or estimator of biodiversity var-
iables, and to suggest a generalized modeling
framework from which many different kinds of
models can be developed to address multiple
variables of biodiversity.

MODELS AS ESTIMATORS

A model can be used as an estimator of some
parameter. In the context of this paper, a model
can use some measurable habitat surrogate or
indicator from which inference is made to some
biodiversity variable, for example, habitat qual-
ity serving as a surrogate or an estimator of the

presence or abundance of some species. Studies
suggest that some habitat attributes can predict
some biodiversity variables but the degree of
predictability varies by the type of statistics
used and the variables in question.

For example, Schtickzelle and others (2005)
used surrogate data from a healthy metapop-
ulation of a fritillary butterfly to analyze via-
bility of an endangered metapopulation of the
same species. They used this tactic to circum-
vent the need for high quality data from the en-
dangered metapopulation which would other-
wise be required to parameterize population
viability models. This approach carried the as-
sumptions that the dynamics of the healthy
metapopulation can represent those of the en-
dangered one and that threats to the latter were
external to population dynamics.

In another example, Barve and others (2005)
used surrogate data on human settlements,
livestock, roads, and other habitat features to
evaluate threats to a wildlife sanctuary in
southern India. They validated their model by
finding a positive correlation between their
threat index levels and anthropogenic distur-
bance activities and a negative correlation be-
tween threat index levels and tree species rich-
ness, which in turn represented integrity of the
wildlife sanctuary ecosystem. However, there
was no direct measure of ecosystem integrity
beyond tree species richness, so the assumed
link between this variable and other ecosystem
variables remains untested.
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TABLE 1. Components of biodiversity with some example measurable variables (after Noss 1991). Note that
only the community-ecosystem structural variables are what are typically regarded as ‘‘habitat’’ variables.

Level of biological
organization Composition Structure Function

Gene or genome Allelic diversity Effective population size Inbreeding depression
Rare alleles Heterozygosity Gene flow

Population or species Abundance Dispersion, range Vital rates
Biomass Population structure Metapopulation trends

Phenology
Community or ecosystem Functional groups Vegetation structure Key ecological functions

Rare communities Physical features Nutrient cycling

Oliver and others (2004) reported that types
and variety of land classes served as surrogates
to biodiversity, principally the spatial configu-
ration of biological assemblages, for conserva-
tion planning. To test this relation, they studied
vascular plants, invertebrates, and microbiota
in 4 land classes varying in degree of size and
isolation in Australia. They found that type of
land class correlated with, and thus served as
a surrogate for, unique biota even though many
individual species may not have been uniquely
associated with each land system. This meant
that types of land classes could be used as sur-
rogates to general species assemblage compo-
sition but not individual species. Also, degree
of isolation of the land classes did not account
for a significant amount of the variation ob-
served in the species assemblages, and thus ad-
ditional, explicit modeling of any isolation ef-
fects would need to be further pursued.

Other uses of surrogates, successful to vary-
ing degrees, include representing endangered
species (Burton 2003), identifying optimal bio-
reserve networks (Rothley 2002), using land-
scape variables as ecological indicators of forest
fragmentation effects (Lindenmayer and others
2002), using topography, soil, and hydrology to
represent bird and dung beetle assemblages
(Wessels and others 1999), and using vascular
plants to represent fungal species richness in
reserve design (Chiarucci and others 2005).
Wilsey and others (2005), however, found that
plant species richness incompletely represent-
ed grassland biodiversity.

The lesson from these examples is that the
degree to which surrogate variables represent
various aspects of biodiversity varies depend-
ing on the context and specific variables used.
Thus, instead of searching for 1 surrogate to
represent biodiversity, it may be more appro-
priate to develop a general modeling approach

to depict and evaluate efficacy of using habitat
or other variables to represent biodiversity.
Here, I suggest generalized methods for devel-
oping testable habitat models to represent and
predict biodiversity variables.

Influence Diagrams Depict Relations

One broad approach to developing habitat
models to represent biodiversity variables may
entail use of influence diagrams. At their sim-
plest, these are pictures of boxes and arrows
showing relations among variables (Fig. 1; Var-
is 1997) or more complex representations of di-
rectly measured variables, latent or unobserved
variables, various correlation or causal rela-
tions, and unexplained variation (Fig. 2). An
example of a latent variable is ‘‘habitat quality’’
which may be represented by a habitat suit-
ability index (the HSI nodes in Fig. 2) calculat-
ed from observable habitat attributes.

Using influence diagrams is an efficient and
useful way to depict current understanding
and expert judgment of the relations between
habitat variables and various dimensions of
biodiversity. Influence diagrams can be devel-
oped from an individual’s expertise, from rig-
orously querying a panel of experts, from syn-
thesizing literature, or from a combination of
these approaches. The advantages of using in-
fluence diagrams are that they are relatively
easy to construct and to understand, they can
represent a wide variety of variables and rela-
tionships, and unlike most statistical models
they do not depend on having a large body of
empirical data. However, they should be
thought of as only the 1st step in developing
more quantitative and testable models.

Although not always called such, influence
diagrams are widely used in ecological and
other modeling (for example, Jensen and Jensen
1996; Zhu and others 1998). A simple influence
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FIGURE 1. A simple influence diagram depicting habitat suitability for a terrestrial mollusk, the Malone
jumping-slug (Hemphillia malonei), in the US Pacific Northwest.

FIGURE 2. Correlates and causes represented in a
hypothetical species influence diagram. HV � habi-
tat variable, HSI � habitat suitability index value de-
rived from habitat variables, S � species presence or
abundance, ? � unobserved influence. Boxes repre-
sent observed or directly measured variables, circles
represent latent (unobserved) factors or constructs,
single-headed arrows indicate causal relationships
between variables and constructs, double-headed ar-
rows indicate associations between variables or con-
structs with no attribution of causation, and arrows
not originating in a variable represent residual un-
explained variances due to unmeasured factors,
chance variation, or both.

diagram might depict inference made from
some habitat surrogate variable to some bio-
diversity variable, for example key environ-
mental and habitat correlates of a species of in-
terest. At best, it would depict proximate causal
factors, showing a ‘‘causal web’’ of influences
(for example, Shipley 2002; Fabricius and
De’ath 2004).

An influence diagram then can be expanded
or embellished into many other model forms
which can help depict and explain the degree
to which habitat variables can serve as surro-
gates to biodiversity variables, and which can
be explicitly tested for their accuracy of predic-
tion. Some examples follow.

Expanding Influence Diagrams Into Other Model
Forms

Partitioning the Variance.—An influence dia-
gram can serve as a picture of the statistical re-
lations between predictor (habitat) variables
and response (biodiversity) variables. The
question of how well habitat can represent bio-
diversity can be restated as the degree to which
the variability in some biodiversity variable is
indexed or estimated by habitat variables. This
can be represented in standard ANOVA fashion
by partitioning variance of the response vari-
able into among-groups (or treatment) sources
and residual (or error) sources. The residual
sources are essentially a statement of the de-
gree to which variation in the biodiversity var-
iable is not explained by the habitat variable(s).
This is the unexplained variation shown in the
influence diagram (Fig. 2). The complement of
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FIGURE 3. Path regression models. Top: A gener-
alized path regression model explaining variation in
some biodiversity variable from a habitat variable
(H), non-habitat variables (N), and unknown influ-
ences (U). Labels on the lines represent individual
influences or conditional probabilities (p). Bottom: A
simple hypothetical path regression model of abun-
dance of some migratory bird species.

this describes the degree to which management
of the habitat variables can reasonably be ex-
pected to influence the biodiversity variable of
interest.

Also, surrogate habitat variables can be
viewed broadly as statistical estimators of the
biodiversity variable(s). Statistical estimators
have particular characteristics, namely preci-
sion, accuracy, bias, and consistency, in how
well they can serve as surrogates or indicators
for the response variables they index. Partition-
ing the variance can help explain and quantify
some of these characteristics such as precision,
but additional statistical analyses such as good-
ness-of-fit tests would be useful to determine
other characteristics.

Also important is evaluating rates of Type I
and Type II errors by controlling for confidence
and power of statistical predictions of biodi-
versity variable(s) from habitat surrogates.
Methods for controlling and evaluating such er-
rors are beyond the scope of this paper and
useful reviews are available elsewhere (Steidl
and others 1997; Di Stefano 2001; Verhoeven
and others 2005).

Partial Correlation Analysis.—Another way to
describe the degree of predictability in statis-
tical models is to calculate the standardized
partial correlation between the habitat vari-
able(s) and the biodiversity variable of interest.
Partial correlation tells the degree of relation
between the variables given influence from oth-
er sources, not all of which may be known.
Standardizing the values makes it possible to
directly compare relative effects among the
variables. Many multivariate statistical model-
ing forms can be used for partial correlation
analysis, such as traditional multiple linear (or
logistic) regression. As an example, King and
others (2005) used partial correlation analysis
to describe the relative influence of various
land-cover classes in predicting stream nitro-
gen and macroinvertebrate assemblages. A
partial correlation model by itself, however,
does not distinguish between causal and non-
causal relationships between variables as used
in an influence diagram (Fig. 2). Causality must
be determined by other means, such as from
corroborative studies or direct experimental
manipulative studies (Marcot 1998).

Path Regression Analysis.—One particularly
useful tool to depict partial correlation is path
regression (Shipley 2002). A path regression

model looks like an influence diagram with the
arrows labeled according to their partial cor-
relation (or conditional probability as may be
used in a belief network, discussed below) (Fig.
3 top). For example, a simple influence diagram
might depict the effect of breeding habitat,
wintering habitat, predators, and unknown
sources, on the abundance or dispersion of
some migratory bird population (Fig. 3 bot-
tom). The local manager may wish to know the
degree to which managing for breeding habitat
alone would provide for the population, and
this would be depicted by the partial correla-
tion between breeding habitat and the popu-
lation variable.

In this hypothetical example (Fig. 3 bottom),
path regression analysis may suggest that only
20% of the variation in a migratory bird pop-
ulation can be affected by conserving or re-
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FIGURE 4. A Bayesian belief network model of Malone’s jumping-slug based on the influence diagram
shown in Fig. 1. This figure illustrates running the model for a specific location within the silver fir–mountain
hemlock zone with a moderate litter–duff layer, presence of woody debris, absence of wet site patches, open
canopy closure of low shrubs, and moderate canopy closure of trees and tall shrubs. Values by the solid bars
are probabilities; for example, the model predicts an approximately 71% probability that this site has slugs
present. Numbers below boxes A, J, and J1 are mean and standard deviation (assuming a Gaussian error
distribution), where values in box A are scaled from �1 for absence to �1 for presence (thus, 0.412 denotes
moderate evidence of slug presence). This model was developed, peer-reviewed, and refined from species
expert experience, but was not further validated in the field.

storing local breeding habitat alone, and the re-
mainder of the variation is influenced by other
known and unknown factors. This does not
mean that local breeding habitat is inconse-
quential; it may be a critical causal link to the
persistence of the bird’s population. But such
an analysis can inform managers as to what
outcomes they should realistically expect from
a local habitat management program.

In fact, one can expect that only approxi-
mately 20 to 50% of the variation in the pres-
ence and abundance of most wildlife popula-
tions is accounted for by measurable habitat
variables; large unexplained residual variances
are common in ecological models, such as pol-
lination models (Mitchell 2001). This means
that at least half, often substantially more, of
the variation is influenced by factors other than
local measurable habitat variables. Habitat is
still essential, but may not completely account
for a desired population outcome.

Process Simulation Modeling.—Influence dia-
grams also can serve as the basis for process
simulation models. Simulation models are typ-
ically time-dynamic based and often use some
form of difference equations to represent incre-

mental changes in values of variables. An ex-
ample is Hudson’s (1995) process model of the
demand and output of commercially exploited
wildlife. Hudson used the STELLA modeling
shell which provides time-dynamic estimates
of model variables such as population size, hab-
itat extent, kill rates, and product values.

Other examples of process simulation mod-
eling are commonly found as part of popula-
tion viability analyses. Examples include spa-
tially explicit, individual-based population
simulation models (Schumaker 1992; Schiegg
and others 2005), models of patch occupancy
and metapopulation dynamics (Moilanen
2004), and models of dispersal (Higgins and
others 2001).

Bayesian Belief Network Modeling.—Influence
diagrams can become the basis for Bayesian be-
lief network (BBN) models (Marcot and others
2001). BBNs depict probabilistic relations
among causal variables and use Bayesian sta-
tistics to calculate probabilities of outcome
states such as population presence, given con-
ditions of input variables such as habitat con-
ditions (Fig. 4). BBNs are based on uncondi-
tional or prior probabilities of input variables
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TABLE 2. A conditional probability table of microclimate suitability in the Malone jumping-slug model
(node E in Fig. 4). Probability values under the columns Suitable and Unsuitable were derived from expert
judgment and experience and from an initial set of known site data.

Predictor variables of microclimate suitability

Tree or tall shrub
canopy closure

(%) (node J) Vegetation zone (node C)

Low shrub
canopy closure
(%) (node J1)

Microclimate suitability (node E)

Suitable Unsuitable

80 to 100
80 to 100
80 to 100
80 to 100
80 to 100

Western hemlock
Western hemlock
Western hemlock
Silver fir-mountain hemlock
Silver fir-mountain hemlock

40 to 100
20 to 40

0 to 20
40 to 100
20 to 40

100
80
70

100
90

0
20
30

0
10

80 to 100
60 to 80
60 to 80
60 to 80
60 to 80

Silver fir-mountain hemlock
Western hemlock
Western hemlock
Western hemlock
Silver fir-mountain hemlock

0 to 20
40 to 100
20 to 40

0 to 20
40 to 100

80
100

70
50

100

20
0

30
50

0
60 to 80
60 to 80

0 to 60
0 to 60
0 to 60

Silver fir-mountain hemlock
Silver fir-mountain hemlock
Western hemlock
Western hemlock
Western hemlock

20 to 40
0 to 20

40 to 100
20 to 40

0 to 20

80
60
40
20

0

20
40
60
80

100
60 to 60

0 to 60
0 to 60

Silver fir-mountain hemlock
Silver fir-mountain hemlock
Silver fir-mountain hemlock

40 to 100
20 to 40

0 to 20

50
30

0

50
70

100

(for example, box T2 in Fig. 4), conditional
probabilities of intermediate variables (latent
constructs in influence diagrams, such as boxes
E and M1 in Fig. 4), and posterior probabilities
of output or response variables (box A in Fig.
4). Prior and conditional probabilities (for ex-
ample, Table 2) are typically assigned by expert
judgment, literature review, empirical data, or
some combination, and posterior probabilities
are calculated using Bayesian learning statis-
tical methods. BBNs also can explicitly include
management and utility nodes that depict al-
ternative activities and values (costs or bene-
fits) of different outcomes, respectively.

Structural Equation Modeling.—A generalized
approach to embellishing an influence diagram
for modeling biodiversity from habitat factors
may use structural equation modeling (SEM;
Pugesek and others 2003), sometimes also
called causal modeling. SEM is not a particular
model structure per se but rather a way to con-
struct and formalize relationships among var-
iables. It is more useful with observational
rather than experimental data and is a gener-
alization of many statistical techniques com-
monly found in the habitat modeling literature,
including regression, discriminant analysis, ca-
nonical correlation, factor analysis, and others.
As a general approach, SEM can be used to ad-

dress ill-conditioned problems that lack neat
analytic solutions, such as modeling habitat to
predict biodiversity variables. Iriondo and oth-
ers (2003) provided a good discussion of SEM
and demonstrated its use to model causal re-
lationships in threatened plant populations.
SEM statistical methods are covered well in re-
cent texts (Shipley 2002; Kline 2004; Schumack-
er and Lomax 2004).

SEM is structured by differentiating among
direct causal relationships, indirect causal re-
lationships, spurious relationships, and asso-
ciation without causation (Fig. 2). The 1st step
in SEM is to create the model structure as an
influence diagram of variable relations, such as
depicting a species (or other biodiversity vari-
able) as a causal function of habitat variables,
not forgetting to depict the unexplained vari-
ance. The next step is to expand the latent var-
iables into their components (Bollen 1989), such
as expanding ‘‘habitat’’ into discrete, measur-
able variables of vegetation structure and to-
pographic condition (for example, Pugesek and
Tomer 1996; Fig. 2). Then, estimates of regres-
sion weights are computed for each variable re-
lation, for example, the degree to which each
habitat variable component affects the species
of interest; regression weights can be derived
using partial correlation analysis or Bayesian
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conditional probabilities (discussed above).
Next, measurement errors of each component
variable are estimated. This step is seldom
done in more traditional process or analytic
modeling but is a vital part of SEM and can
usefully depict the amount of uncertainty in
the habitat-biodiversity relations represented
in the model. Measurement error and uncon-
trolled variation are the inescapable hallmark
of observational studies, such as retrospective
studies (for example, Montes and others 2005)
and time- or location-based comparison studies
(Benedetti-Cecchi 2001; Bro and others 2004).

The final SEM model is a depiction of specific
variable relations, the strength of their rela-
tions, and the degree of uncertainty of those
variables and their relations. The aim of SEM is
to test the hypothesized underlying causal re-
lations among variables by analyzing their co-
variance structure. This is done by using good-
ness-of-fit tests to evaluate the congruence be-
tween the variance-covariance matrix derived
from observational data to that suggested by
the hypothetical causal structure (the predicted
moment matrix). Many methods of estimation
in SEM can be used for this final analysis step.
They typically include maximum likelihood es-
timation (MLE) with multivariate normal data
and a large sample size (about 200� observa-
tions); weighted least squares (WLS; also called
asymptotically distribution free) methods with
continuous but nonnormal data; and polychoric
correlation analysis with ordinal variables,
which computes correlation between unob-
served normal variables and then uses WLS. A
number of software packages are available spe-
cifically for SEM including LISREL, EQS,
AMOS, and CALIS (Iriondo and others 2003),
and some general statistical packages such as
SYSTAT have procedures for doing SEM.

Information-theoretic Modeling.—Another class
of modeling is based on information theory
(Anderson and others 2000; Burnham and An-
derson 2002). These models depict relations
and predictions as likelihoods. Information-
theoretic models have become somewhat pop-
ular recently in the wake of some authors de-
emphasizing the value of traditional statistical
testing of null hypotheses (Guthery and others
2001). They suggest that likelihood analysis in
information-theoretic models can at least par-
tially replace null hypothesis testing (Ander-
son and others 2000) and that structuring our

understanding as reliable knowledge has pri-
ority over letting statistical tools dictate how
we test and understand ecological relations.
This philosophy fits well with use of influence
diagrams and their quantitative cousins, which
force us to 1st frame the research hypothesis
and causal relations among variables before de-
termining the statistical hypotheses and signif-
icance of relationships among variables.

Anderson and others (2001) and Anderson
and Burnham (2002) offered caveats on avoid-
ing spurious findings and misuse of informa-
tion-theoretic models in wildlife studies, in-
cluding suggestions on avoiding problems of
analytic methods and on framing the basic
question. Properly framing the initial influence
diagram to correctly represent potential sur-
rogates and various relationships among vari-
ables (Fig. 2) could go a long way to avoiding
such pitfalls and creating more useful models.

Other Modeling Approaches.—A host of other
modeling approaches can tier from the influ-
ence diagram framework including Markov
chain, transition matrix, and loop analysis or
graph theory models to depict ecological suc-
cession, vegetation growth and development,
ecosystem disturbance, and community struc-
ture and ecosystem process. Specific models of
these types are many and include VDDT (Bar-
rett 2001; ESSA 2005), SITES (Andelman and
others 1999), SELES (Fall undated), MARXAN
(Ball and Possingham 2000), ECOSIM and
ECOPATH (Pauly and others 2000), BioMapper
(Hirzel and others 2002), and PATH (Schumak-
er 1992). Influence diagrams also can serve as
the basis for more traditional species-habitat
relationships models including habitat suit-
ability index, habitat effectiveness, and habitat
evaluation procedures models (for example,
Roloff and Kernohan 2000).

DISCUSSION

Limitations of Habitat Models

Habitat models address only a few biodiver-
sity variables directly (namely, structural as-
pects of communities and ecosystems, Table 1),
but can indirectly serve as surrogates to other
biodiversity variables to varying degrees. Al-
though habitat of species and organisms is nec-
essary for biodiversity conservation, habitat
alone usually is incomplete. Habitat models
therefore will never fully serve as perfect esti-
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mators of all biodiversity variables, regardless
of the type of model used. Depending on their
management objectives and information needs,
managers may wish to engage other specific
models to more directly estimate selected fac-
ets of biodiversity. There is only so much that
habitat models can tell you about such biodi-
versity variables as genomes, ecological func-
tions of species, viability of metapopulations,
and ecosystem processes.

A risk-analysis approach to biodiversity con-
servation can entail estimating the extent to
which habitat alone will provide for a specified
array of biodiversity variables. This will inform
the manager as to the degree to which habitat
conservation or restoration will provide for bio-
diversity; that is, it will provide a realistic ex-
pectation of successful biodiversity conserva-
tion given management activities focused on
habitat. One might also heed the discussion by
Failing and Gregory (1999) of common mis-
takes made in designing biodiversity indicators
for guiding forest management policy; their ad-
vice can help correctly structure influence di-
agrams from the beginning such as by attend-
ing to indicators that management can influ-
ence, identifying appropriate response vari-
ables, and using tightly-linked estimator
variables. Lindenmayer and others (2000) pro-
vided a useful discussion of selecting appro-
priate indicators for sustainable forest man-
agement, offered caveats against use of some
taxon- and species-based indicators, and sug-
gested using and testing structure-based bio-
diversity indicators of vegetation stand com-
plexity, connectivity, and heterogeneity.

Some Practical Guidelines

Influence diagrams, especially when depict-
ing causal webs, are 1 of the more useful and
robust ways to begin such an indicator or sur-
rogate modeling exercise. Influence diagrams
can become the basis for many specific model
forms and for quantifying relations among var-
iables, especially habitat surrogates for biodi-
versity variables. Some practical guidelines for
constructing useful influence diagrams are as
follows.

First, the modeler should clearly define the
objectives of the model, including its intended
audience, use, and geographic area. Objectives
should include clearly listing the variable(s) of
biodiversity intended to be represented in the

model, and the environmental or habitat vari-
ables that could be used in the model as sur-
rogates or predictors.

Second, the modeler should take stock of ex-
isting knowledge regarding the biodiversity
variables in the geographic area of interest or
in similar ecological situations. This can in-
clude literature review, compiling data sets,
and querying experts.

The modeler is then in a position to compile
this information into 1 or more representations
of relations among variables, that is, to build an
influence diagram of causal relations between
habitat and biodiversity variables. Building the
influence diagram can be done with the infor-
mal aid of individual domain experts or more
formally in expert panels. The resulting influ-
ence diagram then constitutes a representation
of current knowledge.

Next, the influence diagrams can be used as
the basis for quantitatively modeling variable
relations, as with Bayesian belief networks and
information-theoretic approaches. They can
also serve as a basis from which to prioritize
field studies to determine degree of association
among variables, as with partial correlation
and path regression models. Such models can
be further calibrated and validated by testing
and updating the model structure and incor-
porating data on new variable relations.

Finally, results can be conveyed to managers
in terms of the degree to which specific habitat
variables, and management activities affecting
those variables, can be expected to influence
desired biodiversity outcomes. Uncertainties in
model predictions should be made clear and be
part of any risk analysis.

The future of habitat modeling for biodiver-
sity also could explore a formal approach using
structural equation and information-theoretic
modeling. This would explicitly quantify rela-
tions between habitat variables and biodiver-
sity variables, and especially the uncertainties
and measurement errors associated with vari-
ables and their relations, although it is still the
onus of the modeler to demonstrate causation
among variable relations. Any such modeling
approach should have as its goal a means of in-
forming resource managers the degree to
which providing habitat alone will suffice to
ensure the full array of biodiversity variables,
which is likely to be far less than expected or
assumed.
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