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This  paper  presents  a selected  set  of existing  and  new  metrics  for gauging  Bayesian  network  model
performance  and  uncertainty.  Selected  existing  and  new  metrics  are  discussed  for  conducting  model
sensitivity  analysis  (variance  reduction,  entropy  reduction,  case  file  simulation);  evaluating  scenarios
(influence  analysis);  depicting  model  complexity  (numbers  of  model  variables,  links,  node  states,  con-
ditional  probabilities,  and  node  cliques);  assessing  prediction  performance  (confusion  tables,  covariate-
and  conditional  probability-weighted  confusion  error  rates,  area  under  receiver  operating  characteristic
ncertainty
odel performance
odel validation

ensitivity analysis
rror rates
robability analysis

curves,  k-fold  cross-validation,  spherical  payoff,  Schwarz’  Bayesian  information  criterion,  true  skill  statis-
tic,  Cohen’s  kappa);  and  evaluating  uncertainty  of  model  posterior  probability  distributions  (Bayesian
credible  interval,  posterior  probability  certainty  index,  certainty  envelope,  Gini  coefficient).  Examples  are
presented of applying  the  metrics  to 3 real-world  models  of  wildlife  population  analysis  and  manage-
ment.  Using  such  metrics  can vitally  bolster  model  credibility,  acceptance,  and  appropriate  application,
particularly  when  informing  management  decisions.
. Introduction

Bayesian networks (BNs) are models that link variables with
robabilities and that use Bayes’ theorem and associated Bayesian

earning algorithms to calculate posterior probabilities of outcome
tates (Jensen and Nielsen, 2007). BN models are used in many
cological and environmental analyses (Aalders, 2008; McCann
t al., 2006; Pourret et al., 2008), in part spurred by the avail-
bility of user-friendly computer modeling shells such as Hugin
www.hugin.com), Netica (www.norsys.com), and others, and
se of the WinBugs open-source modeling platform (www.mrc-
su.cam.ac.uk/bugs). As their popularity increases, it becomes more

mportant to ensure rigor in their application to real-world prob-
ems (Uusitalo, 2007). Two such areas addressed here are methods
or evaluating performance and uncertainty of BN model results.

erformance pertains to how well a BN model predicts or diagnoses
ome outcome, that is, the accuracy of model results. Uncertainty
ertains to the dispersion of posterior probability values among

Abbreviations: AIC, Akaike information criterion; AUC, area under the (receiver
perating) curve; BIC, Bayesian information criterion; BN, Bayesian network; CPT,
onditional probability table; GCM, global circulation model; GHG, greenhouse gas;
PCI, posterior probability certainty index; PPPCIMAX, maximum PPCI value given
ne  or more state probability values; PPCIMIN, minimum PPCI value given one or
ore state probability values; PPD, posterior probability distribution; ROC, receiver

perating characteristic (curve); SP, spherical payoff; TSS, true skill statistic; VR,
ariance reduction.
∗ Tel.: +1 11 503 808 2010.
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different outcome states, that is, the spread of alternative predic-
tions. Ideally, the best model would have high performance and low
uncertainty, but to date their measures are either lacking or have
not been well summarized.

The purpose of this paper is to present a selected set of existing
and new metrics for gauging BN model performance and uncer-
tainty, including: assessment of model sensitivity and influence of
input variables; various measures of model complexity, prediction
performance, error rates, model selection, and model validation;
and various metrics for depicting uncertainty of model output. I
demonstrate application of the metrics to published, real-world
BN models, and their degree of correlation and performance char-
acteristics. I then summarize the utility and caveats of the metrics
and conclude with the need for considering such metrics to bolster
model credibility, acceptance, and appropriate application, partic-
ularly when informing management decisions.

2. Methods

2.1. Background on Bayesian network models

BN models can vary in their construction but most consist of
variables represented as nodes with discrete, mutually exclusive
states (Cain et al., 1999). Each state is represented with a proba-
bility. Types of variables (“nodes”) in a BN model include: inputs

(covariates, prediction variables) with states comprised of uncon-
ditional, marginal, prior probabilities; outputs (response variables)
with states calculated as posterior probabilities; and, in many mod-
els, intermediate summary nodes (latent variables), with states

dx.doi.org/10.1016/j.ecolmodel.2012.01.013
http://www.sciencedirect.com/science/journal/03043800
http://www.elsevier.com/locate/ecolmodel
http://www.hugin.com/
http://www.norsys.com/
http://www.mrc-bsu.cam.ac.uk/bugs
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mailto:brucem@SpiritOne.com
dx.doi.org/10.1016/j.ecolmodel.2012.01.013
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omprised of conditional probabilities (Marcot et al., 2006). Vari-
bles also can constitute scalars and continuous equations.

Nodes are linked according to direct causal or correlative rela-
ions between variables. BN model structure – including selection
nd linkage of variables and their states, and their underlying prob-
bility values – can be defined by expert judgment, use of empirical
ata, or a combination. BN decision models include decision nodes
nd utility nodes. Before calculations can be made of posterior out-
ome probabilities, most nodes in a BN model must be “discretized”
hereby continuous values are represented as discrete states or

alue ranges. Running a BN model typically consists of specifying
nput values and calculating the posterior probability distribution
PPD) of the outcome variable(s). For a given application, the set
f expected or normal values of the input variables constitute the
normative” model scenario (e.g., as used by Jay et al., 2011).

.2. Metrics of model sensitivity and influence

.2.1. Sensitivity analysis
Sensitivity analysis in BN modeling pertains to determining the

egree to which variation in PPDs is explained by other variables,
nd essentially depicts the underlying probability structure of a
odel given prior probability distributions. Model sensitivity can

e calculated as variance reduction with continuous variables or
ntropy reduction with ordinal-scale or categorical variables.

As used in the modeling shell Netica (B. Boerlage, pers. comm.),
ariance reduction (VR) is calculated as the expected reduction
n the variation of the expected real value of an output variable

 that has q states, due to the value of an input variable F that
as f states. The calculation is VR = V(Q ) − V(Q |F), where V(Q ) =

qP(q)[Xq − E(Q )]2, V(Q |F) =
∑

qP(q|f )[Xq − E(Q |f )]2, E(Q ) =
qP(q)Xq, where Xq is the numeric real value of state q, E(Q) is the

xpected real value of Q before applying new findings, E(Q|f) is the
xpected real value of Q after applying new findings f for variable
, and V(Q) is the variance of the real value of Q before an new find-
ngs. Entropy reduction, I, is calculated as the expected reduction in

utual information of Q from a finding for variable F, calculated as

 = H(Q ) − H(Q |F) =
∑

q

∑
f

P(q, f )log2[P(q, f )]
P(q)P(f )

here H(Q) is the entropy of Q before any new findings, H(Q|F)
s the entropy of Q after new findings from variable F, and Q is

easured in information bits (Marcot et al., 2006). Alternatively,
ensitivity structure can be determined through simulation (e.g.,
hogmartin, 2010), such as by generating a large number of
imulated data sets and analyzing the covariation between values
f input variables and PPDs.

From the results of a sensitivity analysis, input variables can
e rank-ordered or compared quantitatively as to the degree to
hich each reduces variance or uncertainty (entropy) in a speci-
ed outcome variable. Typically, sensitivity is calculated with input
ariables set to their default prior probability distributions because
pecifying the value of an input variable sets its sensitivity value to
ero, which can also affect sensitivity of the remaining variables;
owever, this may  be a useful method for determining residual sen-
itivity behavior if one or more inputs are known. More generally,
N models can be used to evaluate sensitivity of a response variable
o the probability distributions of other variables.

.2.2. Influence analysis

In contrast to sensitivity analysis is what I term influence anal-

sis, which refers to evaluating effects on PPDs from selected input
ariables set to best- or worst-case scenario values. Resulting PPDs
re then compared with those generated from the normative model
lling 230 (2012) 50– 62 51

and from other scenario settings. The difference between influence
analysis and sensitivity analysis is that specifying the value of an
input variable forces that variable’s sensitivity value (variance or
entropy reduction) to zero whereas it still may  have a high influence
on the PPD outcome. Conducting influence runs can help reveal the
degree to which individual or sets of input variables could affect
outcome probabilities. This is helpful in a decision setting, where
management might prioritize activities to best effect desirable, or
to avoid undesirable, outcomes.

2.3. Metrics of model complexity

Much of ecological statistical modeling strives to balance accu-
racy with parsimony in explanation of some outcome (Burnham
and Anderson, 2010), because overly complex models can perform
poorly (Adkison, 2009). The parsimony criterion refers to identify-
ing the simplest model that still provides acceptable results, and
can be depicted by several metrics of BN model complexity.

Two  simple metrics of BN model complexity are number of vari-
ables (nodes) and number of links. More involved metrics include
total numbers of: node states (of categorical, ordinal, and dis-
cretized continuous states of all variables), conditional probabilities
(excluding marginal prior probabilities), and node cliques (sub-
sets of fully interconnected nodes). Total number of conditional
probabilities is

V∑
i=1

⎡
⎣S

n∏
j=1

Pj

⎤
⎦

where S = no. states of the child node, Pj = no. of states of the jth
parent node, for n parent nodes, among all V nodes in the model.

Further, any of these metrics of model complexity could be
partitioned by type of node (nature, decision, utility, or constant)
involved. Overall, metrics of model complexity are not necessarily
correlated. For example, a model with n nodes could be struc-
tured (linked) in many different ways, with nodes bearing few to
many states. Thus, using >1 metric of model complexity can help to
represent the fuller array of model architectures when addressing
questions of parsimony.

2.4. Metrics of BN model prediction performance

Several metrics can be used to evaluate the performance of
BN models when cases are available for which outcomes are
known. Existing metrics useful to BN modeling include use of
confusion tables, receiver operating characteristic curves, k-fold
cross-validation, and performance indices such as spherical pay-
off, Schwarz’ Bayesian information criterion, and true skill statistic.
New metrics offered here also include covariate-weighted and con-
ditional probability-weighted confusion error.

2.4.1. Error rates and confusion tables
Evaluating the performance accuracy of BN model predic-

tions typically entails comparing highest-probability predictions
to known case outcomes. Error rates are then calculated for false
positives (Type I error, rejecting a true hypothesis), false negatives
(Type II error, failing to reject a false hypothesis), and their sum,
and are depicted in so-called confusion tables (Kohavi and Provost,
1998).

A new variation on this approach is to consider acceptable
thresholds of posterior probability outcomes of predictions that

might be less than the dominant probability prediction, or, as used
by Gutierrez et al. (2011) where predictions match known out-
comes within ±1 “bin” (discrete outcome category). In decision
analysis, the risk attitude of the decision-maker determines the
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egree of error they might accept. For example, it may  be accept-
ble to consider any outcome of some population density level at,
ay, >40% probability, or predictions that range ±1 bin of actual
utcomes, as acceptable predictions, even if they may  not all be
he dominant predicted outcome. In this case, it is possible that
1 population density state might qualify as acceptable, so that
verall model error rates could be lower than if only the highest-
robability prediction was used to calculate model error rate. In
his case, the modeler could define a minimum population den-
ity state that is required, such as under a species recovery plan,
o that all densities above that threshold would be deemed accept-
ble. Yet another variation in confusion tables may  be simply to
eight errors by their prediction probabilities.

.4.2. Weighted confusion error rates
One new way to address model parsimony and prediction accu-

acy is to weight confusion error rates by the number of covariates.
ower values then denote the more parsimonious models with low
rror rates, where parsimony refers to the number of variables
n the model. Variations could include using subsets of the over-
ll model error rate, that is, error rates only for particular state
utcomes, for example if it was more important for the model to
orrectly predict a particular habitat condition or stage class of a
opulation than for others, or more important to avoid Type I or
ype II errors.

A similar new measure is to weight confusion error rates
y the number of conditional probabilities. As with covariate-
eighted confusion error, lower values denote better-performing

nd more parsimonious models but, when weighting by number
f conditional probabilities, parsimony refers to complexity of the
nderlying probability structure.

.4.3. ROC curves and AUC
A different, commonly used means of depicting model predic-

ion performance is the receiver operating characteristic (ROC)
urve (Dlamini, 2010; Hand, 1997). ROC curves plot percent true
ositives (“sensitivity”) as a function of their complement, per-
ent false positives (“1-specificity”). Further, the area under the
OC curve (AUC) is a metric commonly used to judge overall per-

ormance of classification models (Hand, 1997). AUC values range
0,1], where 1 denotes no error, 0.5 denotes totally random models,
nd <0.5 denotes models that more often provide wrong predic-
ions. Different models can be compared by plotting outcomes on
he same ROC diagram and comparing AUC values. Further, Cortes
nd Mohri (2005) provided a useful method for calculating AUC
onfidence intervals based on confusion error rates.

.4.4. k-Fold cross-validation
One can also subdivide an empirical data set (“case file”) and

onduct cross-validation testing by parameterizing the model with
ne subset of cases and then testing it against the other set. In k-
old cross-validation (Boyce et al., 2002), one randomizes the case
le set; sequentially numbers the resulting cases; extracts the first
/kth of the cases in sequence; parameterizes the model with the
emaining [1 − 1/k] cases; and then tests that model against the
rst 1/kth cases left out, recording confusion error rates of model
redication. Next, the second 1/kth set of cases are extracted from
he full case file set, and the procedure is repeated until all k case
ubsets have been used. The resulting k confusion tables are then
veraged for overall model performance.

This approach often uses k = 10, although there is no rigorous

ule for this. k-fold testing is more reliable with large data sets,
uch that for c number of cases, you want to select k such that c/k
rovides a large enough subset of cases to represent replicates of
ll possible combinations of covariate input values. Specific sample
lling 230 (2012) 50– 62

sizes will depend on model complexity, but typically one would
want hundreds or even several thousand cases.

2.4.5. Spherical payoff
Another metric to evaluate classification success of BN models

is spherical payoff (Hand, 1997), an index that ranges [0,1] with
higher values denoting better model performance. Spherical payoff
SP is calculated as:

SP = MOAC · Pc√∑n
j=1P2

j

where MOAC = mean probability value of a given state aver-
aged over all cases, Pc = the predicted probability of the correct
state, Pj = the predicted probability of state j, and n = total number of
states (B. Boerlage, pers. comm.). Spherical payoff is a better metric
than the standard AUC when nuances of probability values are an
important consideration.

2.4.6. Schwarz’ Bayesian information criterion
Schwarz’ Bayesian information criterion (BIC) is useful as an

index for selecting among alternative model structures when com-
paring model results to known outcomes (Schwarz, 1978). Training
BN models with known case outcomes entails testing alternative
CPT values to find the maximum likelihood Bayes network, that is,
the network that is most likely given the case data (Neapolitan,
2003). BIC = −2 · ln(ML) + k · ln(n), where ML  = maximum likeli-
hood value, k = number of parameters in the model, and n = number
of observations. BIC is similar to Akaike information criterion (AIC,
Akaike, 1973) but the former penalizes more for potential errors in
overfitting models to data when increasing the number of model
parameters to produce lower classification error rates (e.g., see
Huang et al., 2007). As with AIC, one subtracts the lowest BIC
value among all models being compared from the BIC value of
each alternative model. The smallest differences (�BIC) denote
the best-performing and most parsimonious model, that is, the
model that best balances model error and dimension (Burnham and
Anderson, 2010). However, covariate- or conditional probability-
weighted confusion error (Section 2.4.2) may  have an advantage
over BIC by more explicitly incorporating prediction error rates into
the performance metric.

2.4.7. True skill statistic and Cohen’s kappa
The true skill statistic (TSS) – also called the Hanssen–Kuiper

discriminant or skill score – is an index of model performance com-
bining frequencies from a 2 × 2 confusion table (Allouche et al.,
2006; Mouton et al., 2010). TSS is calculated from rates of true pos-
itives, true negatives, and Type I and II errors. TSS values range
[−1,1]; analogous to interpretation of AUC scores, 1 represents a
perfectly performing model with no error, 0 a model with totally
random error, and −1 a model with total error. Similar to TSS is
Cohen’s kappa (Boyce et al., 2002), commonly used to test classifi-
cation success in geographic information systems (e.g., Gutzwiller
and Flather, 2011; Zarnetske et al., 2007). Kappa is calculated as the
difference between correct observations and expected outcomes,
divided by the complement of expected outcomes. Kappa values
range [0,1], with 1 being perfect classification.

2.5. Metrics of uncertainty in posterior probability distributions

Several existing and new metrics offered here depict the degree
of uncertainty in BN model outcomes, that is, the dispersion of PPD

values. Such metrics can be used to help inform decisions based
on BN model results in a risk management framework where the
level of certainty of predictions are weighted with the risk attitude
of the decision-maker. These metrics of uncertainty include use of
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ayesian credible intervals, a posterior probability certainty index
nd certainty envelope, and a new adaptation of the Gini coefficient
nd Lorenz curve to depict inequality of PPDs.

.5.1. Bayesian credible intervals
One existing approach to denoting uncertainty in PPDs is use

f Bayesian credible intervals (Bolstad, 2007; Curran, 2005), which
re very loosely an analogue to confidence intervals in frequen-
ist statistics (in some literature, they are confusingly referred to
s Bayesian confidence intervals). An X% Bayesian credible interval
f some PPD of an ordinal or continuous scale variable (but not a
ategorical variable) refers to state-wise probabilities when X/2% is
xcluded from the lowest and highest outcome states. Put another
ay, it is the interval determined for the expected value over repli-

ate calculations based on uncertainty distributions of the input
ariables, not for the PPD of a given instance of input values. A
ayesian credible interval represents the PPD at a specified level
f acceptability, and in this way differs from a probability density
unction (and from a frequentist confidence interval).

One must decide what credible interval value X to use. In prac-
ice, it should be < twice the probability of the most extreme state
f interest. For example, if a manager would be concerned over
ome extreme outcome, such as a species’ extinction, if there was

 5% probability or greater of it occurring, then they should not
se anything < a 90% credible interval, else it might exclude such
n event.

.5.2. Posterior probability certainty index
Another metric that can be used to evaluate uncertainty of BN

odel outcomes is the posterior probability certainty index (PPCI).
his new metric, first presented here, is based on information the-
ry and specifically is an adaptation of the classic evenness index
rom species diversity theory (Hill, 1973). Evenness has long been
sed to measure the relative distribution of species’ abundances in

 community. Here, I extend the concept to PPDs which consist of
i probability values among N number of states, where pi ranges
0,1] and

N

i=1

pi = 1.0.

PPCI is calculated as (1 − J′), where J′ = H′/H′
max,

′ = −
N∑

i=1

piL

here

 =
{

ln(pi), pi > 0
0, pi = 0

,

nd H′
max = ln(N). J′ normalizes the metric proportional to N, so that

he degree of certainty of PPDs can be compared among outcomes
ith different numbers of states N.

In information theory, J′ is a measure of entropy or uncertainty.

n the context of risk management, however, one would hope for
he most uneven PPD, that is, an outcome that most clearly suggests

 particular state with the highest probability. Thus, PPCI ranges
0,1] with higher values denoting greater certainty (greater load-
ng of outcome probabilities into fewer outcome states). Models

ith higher PPCI values of their PPDs denote greater certainty in
utcome predictions. Since PPCI is normalized, it can be compared
mong different models with different numbers of outcome states.
lling 230 (2012) 50– 62 53

2.5.3. Certainty envelope
An associated new metric is the certainty envelope, which is the

range of possible PPCI values given the probability of one or more
states (up to N − 2 states; solutions for > N − 2 states are trivial). A
specific PPCI value calculated from a known PPD for a given sce-
nario can then be compared to the certainty envelope to determine
the relative degree of certainty of that outcome to the range of pos-
sible values. The certainty envelope is variable because the possible
range of PPCI values varies as a function of the probability values
of given states, and only achieves values of 0 and 1 under special
circumstances of uniform posterior probability distributions and
when a single state achieves a probability of 1.0, respectively. Oth-
erwise, PPCI can be scaled to the more constrained range of values
calculated as the certainty envelope.

The certainty envelope has utility in some applications where
the probability of only a subset of outcome states is fixed or known,
where others might be more fluid or unknown, and where the man-
ager would want to know the certainty of the PPD given just the
known outcome states. For example, if a BN model is structured
with five different population levels of a wildlife species (possible
outcome states), and a particular model run results in predicting
probabilities of the two lowest levels, the manager may  wish to
know the overall degree of certainty of the PPD given that par-
ticular outcome. That is, how clumped are probability values as
distributed among the outcome states? The less they are evenly
distributed, given a particular result for specific outcome states,
the more certain can the manager be of overall model results.

The PPCI certainty envelope for a PPD with N states is calculated
as follows. For a given state or set of j states, 1 ≤ j ≤ (N − 2), and
their known, marginal (summed) posterior probability value(s)

m =
j∑

i=1

Pi

there exists a specific range of possible values [PPCIMIN, PPCIMAX],
where PPCIMIN is calculated by setting all other N − j states to uni-
form probabilities, and PPCIMAX is calculated by setting only one
other state to the remaining probability and all other states to zero.
That is, PPCIMIN is calculated from

H′ = −

⎧⎨
⎩

j∑
i=1

PiL +
N∑

i=j+1

[(
1 − m

N − j

)
i
ln

(
1 − m

N − j

)
i

]⎫⎬
⎭

and PPCIMAX is calculated from

H′ = −
{

j∑
i=1

PiL + (1 − m) ln(1 − m)

}

where L is defined above. Thus, for a given PPD with a
specified probability of a given state or set of j states,
PPCIMIN ≤ [PPCI|P(j)] ≤ PPCIMAX. For instance, with N = 5 states
where the probability of one state j is known, the raw
(non-normalized) certainty envelope results in concave upward
distributions of PPCIMIN and PPCIMAX with convergence at 1.0
(Fig. 1). The PPCIMIN curve increasingly skews to the right with
greater number of states.

To best compare PPCI values among competing models particu-
larly with different total numbers of states N or different numbers
of specified state values j, the range [PPCIMIN, PPCIMAX] can itself
be normalized to [0,1], and the relative position of a given value
of [PPCI|P(j)] within this range can be calculated by simple linear

interpolation. Thus, the interpolated value of [PPCI|P(j)] represents
the proportion (or percentage) of total possible certainty for a given
outcome state(s) j. This could be valuable information for a manager
faced with only one piece of information, such as the probability of



54 B.G. Marcot / Ecological Modelling 230 (2012) 50– 62

ith N =

e
c
o

2

u
d
(
c
a
u
p

c
a
i
t
e
t
p
s

t
fi
t
a
i
s
n
t
m
[

h
n
u
f
a
t

Because of the asymptotic nature of the correction curve, the actual
Gini values will range [0,1). Exact and approximate calculations
of the Gini coefficient with discrete BN model outcome states are
presented in Appendix A.
Fig. 1. Non-normalized certainty envelope of a probability distribution w

xtinction of a species, who might also wish to know the level of
ertainty of the rest of the distribution, i.e., the general dispersion
f probabilities among the remaining states.

.5.4. Inequality of posterior probability distributions
Another new measure of the dispersion of PPD values can make

se of what is known as the Gini coefficient used in econometrics to
epict geographic and social distribution of wealth and resources
Atkinson, 1970; Sadras and Bongiovanni, 2004). The Gini coeffi-
ient varies in the range [0,1], and if applied to PPDs in BN models,

 value of 0 represents a uniform probability distribution (complete
ncertainty) and 1 represents a distribution with one state at 100%
robability and all other states at 0% (complete certainty).

The Gini coefficient is calculated as the area under the Lorenz
urve, which, applied to BN modeling, is the cumulative probability
mong outcome states rank-ordered by decreasing values of their
ndividual probabilities. Lorenz curves have been used in ecology
o represent the distribution of species abundance proportions in
cological communities (Ricotta and Avena, 2002). Applied here
o BN modeling, the Lorenz curve plots cumulative proportion of
osterior states as a function of cumulative probability of posterior
tates, anchored to the (0,0) plot origin.

For example, say there is a PPD among 4 outcome states with
he respective probability vector [0.10, 0.85, 0, 0.05]. The vector is
rst reordered in decreasing values, viz., [0.85, 0.10, 0.05, 0], and
hen the respective cumulative frequency distribution is calculated
s [0.85, 0.95, 1, 1]. To account for the origin anchor, an initial zero
s inserted as [0, 0.85, 0.95, 1, 1], constituting x-axis values. Corre-
ponding y-axis values are merely the increasing proportion of the
umber of states beginning with 0; for our 4-state example here,
hose values become [0, 0.25, 0.50, 0.75, 1]. Because PPDs in BN

odels sum to 1, associated Lorenz curves always span the domain
0,1].

The Lorenz curve plot also includes a positive diagonal line,
ere spanning (0,0) to (1,1); this is called the line of perfect even-
ess in econometric literature, and here represents the line of total

ncertainty or highest entropy, that is, the line formed from a uni-
orm probability distribution. The Gini coefficient then is calculated
s the area subtended between the Lorenz curve and the line of
otal uncertainty (perfect evenness). One great advantage of using
 5 states across the full range of probability values of a single state, P(NS).

the Gini coefficient as a measure of the dispersion of posterior
probabilities is that values derived from different models with dif-
ferent numbers of outcome states can be directly compared because
Lorenz curves derived from PPDs always span [0,1].

However, one final correction needs to be applied for use in BN
models. Because BN variables are usually discretized into a finite
number of mutually exclusive states, the maximum value of the
area within the Lorenz curve – doubled, so that the resulting Gini
coefficient theoretically falls in [0,1] – for n states is 1 − (1/n), and
asymptotically, limn→∞(2 ∗ area) = 1.0 (Fig. 2). E.g., if an outcome
node has N = 4 discrete states, the maximum value of 2*area = 0.75.
This maximum area value can be used as a normalizing constant,
that is, by dividing the observed area by this correction factor. Then,
the resulting adjusted Gini coefficient values can be directly com-
pared among models with different numbers of outcome states.
Fig. 2. Maximum value of the area within the Lorenz curve (=Gini coefficient, here
doubled) increases asymptotically to 1.0 as a function of the number of states, as
applied to posterior probabilities from Bayesian network models.
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Fig. 3. Example of influence analysis of polar bear populations, under the IPCC B1
greenhouse gas scenario, plotting the probability of polar bear populations in the
Seasonal Ice Ecoregion becoming rare or extirpated outcomes at 4 future time peri-
B.G. Marcot / Ecologica

.6. Metrics for comparing alternative posterior probability
istributions

Another way to compare results of running BN models among
lternative scenarios is to directly compare PPDs with existing sta-
istical tests. Several such tests may  be appropriate. For example,
ne could use Mantel’s r correlation test (Mantel, 1967) which
etermines the correlation between two matrices. In BN model-

ng, it could determine the correlation between confusion error
atrices resulting from competing models. For this test, ideally the
atrices must be of the same order and rank, so either the BN mod-

ls must have identical states structures denoted in the output node
r results from one model must be collapsed to match the number
nd state structure of the other model.

PPCI metrics also can be statistically compared among model
esults. PPCI metrics, like species diversity indices from informa-
ion theory, likely tend to be non-normally distributed. Thus, it

ay  be more appropriate to use non-parametric tests such as the
olmogorov–Smirnov test which can be used to compare two  PPDs
resented as cumulative frequency distributions.

Another approach for comparing PPDs is to generate simulated
ase files as “replicates” for different model scenarios, and deter-
ine the distribution of PPD values among the replicates for each

cenario and compare PPCI values among the scenarios. Scenar-
os could represent competing models, or different data sets could
e simulated with different variables missing to determine which
issing variable produces the greatest uncertainty in PPDs as a
ay to prioritize research or monitoring activities. Such an analysis
ould complement strict sensitivity and influence analyses.

. Results and discussion

To demonstrate application of the performance and uncertainty
etrics discussed here, I use 3 case examples selected from my

ublished Bayesian network models pertaining to forecasting pop-
lation viability of polar bears (Ursus maritimus;  Amstrup et al.,
008) and Pacific walrus (Odobenus rosmarus divergens; Jay et al.,
011), and using tissue samples to predict age of martens (Martes
mericana and M.  caurina; Pauli et al., 2011). I also statistically com-
are metric values through correlation analysis to determine their
egree of redundancy or complementarity, and provide a summary
f the purpose, assumptions, strengths, and weaknesses of each
etric as a guideline to help select appropriate metrics.

.1. Case example 1: Polar bear populations

This case example illustrates sensitivity analysis metrics, the
omparison of normative to influence analysis model runs, use of
PCI values in depicting confidence of PPDs, and calculations of
ini coefficient values under the Lorenz curve, for identifying the
ajor factors influencing polar bear populations and determining

he degree of confidence and certainty of those projections.
An assessment of global polar bear populations entailed devel-

ping BN models to evaluate the species’ future viability as
nfluenced by a broad suite of stressors in each of 4 ecoregions of
he world. Stressors included potential effects of climate change on
ea ice habitat and prey availability, changes in disease and preda-
ion, direct human disturbance, pollution, and influence of habitat
hreats on population demography. The model was  parameterized
rom ensemble mean outcomes of a suite of 18 global circulation
climate change) models (GCMs) for the sea ice variables, and from
eview of the literature, professional judgment, and peer review

or the other stressor variables. The normative models were run
or recent historic, current, and 4 time periods into the 21st cen-
ury, and under 4 greenhouse gas (GHG) concentration scenarios.
olar bear outcomes were denoted on a 5-category ordinal scale
ods  (Amstrup et al., 2010). “Normative” results refer to setting all stressors to their
expected values for each time period, whereas the “all best” and “all worst” results
refer to setting them to their best and worst case influences.

comparing population distribution and abundance in each ecore-
gion to current conditions, viz., larger than now, same as now,
smaller than now, rare, and extirpated. Here, we combine probabili-
ties of rare and extirpated states, P(r ∪ e), for clarity of presentation.

The model consisted of 36 nodes, 44 links, and 1658 conditional
probability values. Of the 36 nodes, 17 were inputs, representing
the array of population stressor variables. Sensitivity analysis of
the polar bear outcome node to these 17 nodes – with all inputs
set to their uniform probability distributions – suggested that 6
of the top 7 nodes with greatest sensitivity influence, constitut-
ing a cumulative 92% of total sensitivity in the model, pertained to
the potential influence of climate change on sea ice habitat for the
species (Table 1).

Two  future GHG scenarios (B1 and CCSP450) were further run
under 17 influence analyses in which various sets of stressors were
set to best- and worst-case conditions, and compared to normative
results, totaling 575 model scenario conditions. One set of influ-
ence runs demonstrated that P(r ∪ e) could be drastically lowered
by eliminating population stressors, and that effects of normative
(expected) future conditions already are at nearly the worst case
levels (Fig. 3). Additional analysis (Amstrup et al., 2008, 2010) par-
titioned out the influence of each type of stressor and to identified
that reducing climate change impact on future reduction of sea ice
habitat could have the greatest positive benefit on the species’ via-
bility. Further influence analyses revealed that reducing harvest,
adverse effects of pollution and sea traffic, and other controllable
stressors would help reduce adverse population outcomes, but to a
far lesser extent than would ameliorating climate change impacts.
Results of these influence analyses have been used to inform recov-
ery planning for the species and to convey to managers realistic
expectations of implementing such control guidelines.

As for the degree of certainty of PPD outcomes, under nor-
mative results from expected future stressor levels, PPCI values
plotted against posterior probability outcomes suggest greater cer-
tainty in BN probability outcomes when P(r ∪ e) is either very low
(e.g., <0.2, only at near-future time periods) or very high (e.g.,
>0.8, only at mid-century or later time periods) (Fig. 4). That is,

the PPCI plot clearly reveals that greater uncertainty of outcomes
(more even spreads of outcome probabilities of various potential
population conditions) occurs at intermediate values of P(r ∪ e),
which occurs with various combinations of ecoregions and time
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Fig. 4. Example of the posterior probability certainty index (PPCI; 1 = full certainty,
0
t
p

p
m
p
w
t

t
C
o
t
0
G

3

m
v
d
i
o

1
d
a
j
C
o
p
m
s
v
i
s
i
s
l
o

n

 = full uncertainty) as a function of the posterior probability of polar bear popula-
ions becoming rare or extirpated in each of four global ecoregions, by future time
eriod, under the IPCC B1 greenhouse gas scenario.

eriods. This result suggests that those particular combinations
ight warrant greater scrutiny by which to better forecast future

opulation outcomes with higher confidence and certainty. In this
ay, PPCI values can contribute information to help prioritize fur-

her research and population model refinement.
In addition, Gini coefficient values were calculated for 16 norma-

ive scenario conditions, representing two GHG scenarios (B1 and
CSP450) in two ecoregions (Seasonal Ice and Archipelago), each
ver 4 time periods into the 21st century (Amstrup et al., 2008). For
his example set, P(r ∪ e) ranged 0.001–0.842, Gini values ranged
.38–0.78 and PPCI values ranged 0.13–0.54. Correlations between
ini and PPCI values are explored further below.

.2. Case example 2: Pacific walrus population

This case example illustrates another use of influence analysis
odel runs, and demonstrates use of PPCI and certainty envelope

alues, as well as Bayesian credible intervals in depicting confi-
ence of model results, for identifying which major stressors most

nfluence the future walrus population and the degree of certainty
f those projections.

The Pacific walrus population was modeled under conditions of
 past, 1 near-present, and 4 future time periods. Future conditions
erived from 2 alternative IPCC GHG scenarios (A1B and A2) and
ssociated anthropogenic and other environmental stressors pro-
ected over the next century throughout the species’ range in the
hukchi and Bering Seas. Walrus outcomes were depicted as an
rdinal-scale set of 5 possible population conditions, viz., robust,
ersistent, vulnerable, rare, and extirpated. Three seasonal sub-
odels addressed the walrus’ important life history events with

omewhat different arrays of stressors in each season. For example,
ariables depicting sea ice over the continental shelf were included
n the winter submodel as breeding substrates, and in the spring
ubmodel as birthing platforms. As with the polar bear model, sea
ce inputs and CPTs were established using a distribution of two
ets of projections from 18 GCMs for the sea ice variables, and using

iterature review, professional judgment, and peer review for the
ther stressor variables.

A total of 120 BN model runs were conducted including both
ormative and influence analysis scenarios, and PPCI indices were
lling 230 (2012) 50– 62

calculated for each outcome. Influence runs were conducted to
compare the potential effects of best- and worst-case conditions
among specific sets of stressors with the normative (expected)
outcomes. For example, influence runs analyzed the probability
P(v ∪ r ∪ e) of walrus populations becoming vulnerable, rare, or
extirpated from possible positive and negative effects of climate
change on ocean benthic food productivity, frequency of ship and
air traffic, extent and duration of sea ice, and direct harvest by
people (Fig. 5). In this influence-run analysis, two  levels of har-
vest greater (worse) than normative (expected) conditions were
modeled. Results of the influence analyses were quite helpful in
identifying that P(v ∪ r ∪ e) could be lowered the most by retaining
or restoring sea ice, and could be raised the most with the higher
level of harvest. However, the small influence noted in varying cli-
mate change on benthic production and ship and air traffic likely
was due to lack of scientific understanding of those stressor effects.
In this way, influence analysis helped identify the key factors, and
key unknowns, affecting the degree to which populations could
be sustained should conditions or stressors be fully regulated or
become most deleterious.

PPCI values were calculated for each of the 120 normative and
influence analysis model runs, providing information on the level
of certainty of model results. As examples, PPCI outcomes for nor-
mative and a subset of best-case influence analysis runs strongly
suggested that conditions of best-case future sea ice habitat pro-
vides a substantially greater certainty of model results (Fig. 6). That
is, the manager could be most confident that the model provided
a dominant outcome (in this case, of persistent or robust wal-
rus populations, the complement of probabilities shown in Fig. 5)
if future sea ice were to be restored to highest levels observed
historically. Otherwise, certainty levels of model results are less
increased over those of normative conditions when provided with
a combination of best habitat conditions other than sea ice and min-
imizing walrus harvests (Fig. 6). However, it is vital to remember
that, without independent validation, greater dominance of a pre-
dicted future outcome state is not confirmation that the model is
accurate.

An example of calculating the PPCI certainty envelope is based
on the posterior probability of walrus populations becoming extir-
pated under specific influence conditions, in this case that result in
P(extirpation) = 0.02. Minimum certainty (PPCIMIN) is calculated by
retaining the model outcome value of P(extirpation) and then set-
ting all remaining states to uniform values so that all states sum
to 1, and maximum certainty (PPCIMAX) is calculated by setting
only one remaining state to 1 − P(extirpation) and the rest to 0. In
this example, the PPCI value from the model outcome (PPCI = 0.23)
is closer to the minimum possible value (PPCIMIN = 0.09) than the
maximum possible value (PPCIMAX = 0.94) – and the interpolated
PPCI value normalized to a range [0,1] is 0.16 – suggesting rela-
tively high uncertainty of population outcome under these specific
modeled conditions.

Again, this may  be valuable information for managers con-
cerned with future rarity or loss of this threatened species. In
this example, although results suggest relatively high uncertainty
in outcome conditions (normalized PPCI = 0.16), the outcome of
P(extirpation) = 0.02 might itself be low enough to not necessarily
warrant more detailed investigation and analysis, should this par-
ticular influence scenario be of potential management interest and
the certainty of other outcome states of less concern. Further, this
model outcome can be viewed in the context of a broader example
of 10 BN model influence runs which vary by level of certainty and
range of the certainty envelope; this particular influence run pro-

vided slightly higher certainty levels than did most of the other runs
(Fig. 7). In this broader context, other model runs with far higher
P(extirpation) and far lower levels of certainty (PPCI values) might
warrant greater scrutiny.
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ig. 5. Results of BN model runs of future Pacific walrus populations under normati
ownward and upward, respectively), plotting probability of future populations be
1B  greenhouse gas scenario.

The influence analysis model run considered above also can
llustrate use of Bayesian credible intervals. Posterior probability
alues of outcome states robust, persistent, vulnerable, rare, and
xtirpated were [0.41, 0.33, 0.21, 0.03, 0.02], respectively. With
uch ordinal-scale outcome states, one simple use of an X% Bayesian
redible interval is to strip X/2% from the upper and lower ends of
his PPD, thereby preserving equal probability of being above and

elow the interval. E.g., the 90% Bayesian credible interval for this
articular distribution is [0.36, 0.33, 0.21, 0, 0]. In other words, after
pplying this particular influence analysis on walrus populations,

 90% credible interval means that the posterior probability of the

ig. 6. Example of the posterior probability certainty index (PPCI; 1 = full certainty, 0 =
istributions of Pacific walrus populations, under normative and selected best-case influe
y circles) and best-case and worst-case influence analyses (open triangles pointing
g vulnerable, rare, or extirpated as a function of future time period, under the IPCC

population outcome state being robust, persistent, or vulnerable,
is 0.9. Other ways to form credible intervals include centering the
trimming of probability values on the mean, and ensuring that the
median or most-probable outcome state are included.

3.3. Case example 3: Marten telomere–age relationships
This case example illustrates comparative metrics of model
complexity and prediction performance. The models in this case
entail testing whether age class or age in years of martens (mem-
bers of the weasel family) can be determined from telomere length

 full uncertainty) as a function of future time period, from posterior probability
nce analysis scenarios, under the IPCC A1B greenhouse gas scenario.
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Fig. 7. Example of 10 influence analysis BN model results on Pacific walrus popu-
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Table 1
Example of results of sensitivity analysis conducted on a Bayesian network model
of global polar bear population response to environmental contexts and stressors.
Stressor parameters are listed here in decreasing sensitivity value (entropy reduc-
tion; see text for explanation).

Stressor parameter Entropy reduction Cumulative percent
of entropy reduction

Foraging habitat quantity change 0.1297 42
Foraging habitat absence change 0.0488 58
Ecoregion 0.0417 71
Alternate regions available 0.0259 79
Intentional takes 0.0161 84
Shelf distance change 0.0139 89
Foraging habitat character 0.0104 92
Bear–human interactions 0.0082 95
Parasites and disease 0.0051 96
Hydrocarbons and oil spills 0.0027 97
Oil and gas activity 0.0025 98
Shipping 0.0020 99
Predation 0.0009 99
Contaminants 0.0007 99
Alternate prey availability 0.0007 99
Relative ringed seal availability 0.0007 100

Thirty-six alternative models were developed using different

T
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e
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N

(
s

t

ation outcomes, illustrating how the PPCI certainty envelope and run-specific PPCI
utcomes vary by probability of extirpation.

nd other variables. A set of 399 marten specimens of two species
ere measured in the lab for various body metrics, and their key

eatures of their habitats were recorded from their field locations.
elomeres are the ends of chromosomes that generally progres-
ively shorten with each cell division and thus over the life of
n individual, but not necessarily linearly so. Telomere length
tself can be affected by health of the individual, which in turn
s affected by disease, population crowding and stress, availabil-

ty and productivity of food, and perhaps gender and species; these
ovariates or their proxies were recorded for each marten spec-
men, along with actual age measured by standard methods of

able 2
xample of metrics of Bayesian network model complexity and prediction performance
nvironmental covariates (Pauli et al., 2011). Shown here are results of 2 models (sele
rediction performance) and the range of outcomes of the full set of all 36 models.

Metric Live capture modela

Model complexity
Number of covariates (=number of node linksc) 6 

Number of conditional probabilitiesd 56,266 

Number of node statesd 45 

Model  prediction performance
Confusion error (%)

Juveniles only 0.5 

Adults  only 19.4 

All  ages 9.5 

10-Fold cross-validation error (%)
Juveniles only 0.4% 

Adults  only 71.9% 

All  ages 34.9% 

Covariate-weighted confusion error
Juveniles only 2.9 

Adults  only 116.2 

All  ages 57.1 

Conditional probability-weighted confusion error
Juveniles only 272 

Adults  only 10,900 

All  ages 5359 

Spherical payoff 0.94 

Schwarz’ Bayesian information criterion 643.5 

/C, not calculated for all models.
a Models intended for use with captured animals for which age is unknown. Covariate

jaw)  width, species, sex, age class (juvenile or adult); the models predict age class (age in
pecimens, so that model was  not developed.

b Models intended for use with animals sampled non-invasively (i.e., without capture)
he  models identify juveniles (<1 year old) from adults (≥1 year old).

c All models were structured with simple links from each covariate to one response va
d Including covariate and response variables.
Tourism 0.0004 100

Source: Amstrup et al. (2008).

counting cementum annuli (rings) in cross-sections of selected
teeth. The aim of the study was to develop models to predict age of
martens from non-invasive samples such as hair and faeces, so that
the age structure of local populations could be determined with-
out needing to capture individuals of these secretive and elusive
species.
sets of covariates and response variables. CPT values of each model
were established from all or a subset of the 399 marten cases by
using the expectation maximization algorithm (see Marcot, 2006

, using models predicting age of martens (Martes spp.) from genetic, somatic, and
cted as final versions based on criteria for low to moderate complexity and high

Non-invasive modelb Range of values among all 36 models

4 4–7
1051 1051–1,663,299
28 28–93

14.0 0.0–48.6
29.7 10.2–80.6
21.5 6.5–38.6

24.9% N/C
40.2% N/C
32.3% N/C

56.0 0.0–243.2
118.8 40.7–403.1
86.0 38.8–193.0

226 0–63,926
312 107–517,245
226 130–242,342
0.84 0.70–0.96
513.6 70.8–1350.2

s for these models include telomere length, marten population density, zygomatic
 years 0, 1, 2, 3, and 4+). Zygomatic width data were unavailable for continent-only

. Covariates include telomere length, marten population density, species, and sex;

riable.
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Fig. 8. Similarity (single linkage using Euclidean distance) of 5 metrics of Bayesian
network model prediction performance based on the case example of modeling
marten (Martes spp.) age as a function of genetic, somatic, and environmental vari-
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Fig. 9. Nonlinear relationship (best-fit polynomial) between two  metrics of

Beyond their use of summarizing basic model architecture, com-
plexity metrics are quite useful for comparing alternative model

F
o

bles (see text).

or formula details). Each model was then characterized with met-
ics of model complexity and tested against part or all of the 399
arten cases for accuracy of classification success (Pauli et al.,

011). Because some models resulted in prediction of >2 outcome
ategories, the performance metrics AUC and TSS were not calcu-
ated.

Results of evaluating and testing all models were used to iden-
ify the best models having low to moderate complexity and highest
rediction performance (Table 2). The two final models considered
ere were parsimonious in having only 4 or 6 covariates, although
he number of conditional probabilities escalated multiplicatively
ith the total number of node states in the models. Testing the
odels suggested far lower classification error when predicting

uvenile than adult age classes. Overall model performance ranged

ood to excellent, however, as judged by spherical payoff values
Table 2).

ig. 10. Nonlinear and nonmonotonic relationships of two  Bayesian network model certa
r  extirpated, among 16 influence analysis runs (Figs. 4 and 9).
Bayesian network model certainty (dispersion of posterior probability values) – the
posterior probability certainty index (PPCI) with the Gini coefficient – based on 16
influence analysis runs of the polar bear population outcome model (Fig. 4).

3.4. Comparison of metrics

The various measures of sensitivity, influence, complexity,
prediction performance, and uncertainty discussed here provide
complementary insights into the probability structure, relative
importance of input variables, parsimony, accuracy, and reliabil-
ity of BN models. The literature and the case examples explored
here also provide some comparison of selected metrics.

3.4.1. Complexity metrics
structures, such as used with the marten case example. Metrics of
numbers of variables, links, node states, conditional probabilities,

inty metrics, with posterior probability values of polar bear populations being rare
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Table 3
Summary of metrics potentially useful for assessing performance and uncertainty of Bayesian network models.

Metric Use Caveats and assumptions

Model sensitivity and influence
Variance reduction Applied to continuous variables. Input variables are set to their default priori

probabilities unless specifically desired otherwise.
Entropy reduction Applied to ordinal-scale or categorical variables. (As above)
Case  file simulation Analysis of covariation between input variables

and output variable probability distributions.
Simulated cases must cover all covariation
conditions with adequate sample sizes.

Influence analysis Determines incremental effects of selected inputs
set to best, worst, or other specified values.

Best used for scenario analysis and not necessarily
for  prediction.

Model complexity
Number of variables Determines degrees of freedom. Important to include latent variables.
Number of links Depicts degree of connectivity of variables in the

model.
Important to denote and include any links between
correlated input variables.

Number of node states Affects model precision and overall number of
probability values in the model.

Count number of states after discretizing
continuous functions to desired precision.

Number of conditional probabilities Sensitive to model structure, including variable
connections and precision.

Does not include prior (unconditional) probability
tables; could include if desired.

Number of node cliques Depicts degree of independence of effects from
input node sets.

Node cliques resulting from use of latent variables
(intermediate nodes) could bias independence.

Model  prediction performance
Confusion errora Depicts rates of Type I and Type II errors in

classification or prediction models.
Typically based on highest probability state, which
may  oversimplify the utility of the model if other
results could be equally useful.

Area  under curve (AUC)a Depicts performance of classification success. Conflates error types. Assumes 2-state outcomes.
k-Fold  cross-validationa Tests model predictions against subsets of

empirical case data.
Error rates likely inflated with small data sets, as
subsets do not represent full range of conditions
with adequate replications.

Spherical payoffa Indexes performance of classification models. Influenced by number of states in the response
variable.

Schwarz’ Bayesian information criteriona Overall index to model performance and
complexity.

Conflates effects of prediction success, number of
variables, and case data sample size. Conflates
error types.

True  skill statistica Indexes performance of classification models. Conflates error types. Assumes 2-state outcomes.
Cohen’s  kappaa Indexes performance of classification models. Conflates error types. Assumes 2-state outcomes.
Covariate-weighted confusion errora Indexes model prediction error rates weighted by

number of covariates (input variables).
Conflates error types. Index values are open-ended.

Conditional probability-weighted confusion errora Indexes model prediction error rates weighted by
number of conditional probabilities in the model.

Conflates error types. Index values are open-ended.

Model outcome uncertainty
Bayesian credible interval Depicts range of model results for a specified

percent level of acceptability.
Assumes continuous or ordinal-scale variables; not
meaningful with categorical variables. Interval
range should be selected prior to model
development.

Posterior probability certainty index & certainty envelope Indexes degree of dispersion of posterior
probability values among outcome states,
normalized for number of states and possible
minimum and maximum values.

Useful if the degree of spread of probabilities
among outcome states is of interest in a decision
framework.

Gini  coefficient (Lorenz curve area) Indexes degree of dispersion of posterior
amon

Maximum value is constrained by number of
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a Requires external, independent data.

nd node cliques could be highly correlated when comparing alter-
ative model structures based on a common data set. For instance,
mong the 36 alternative marten models explored, the number of
onditional probabilities was significantly correlated with number
f covariates (Pearson r = 0.707, Bonferroni P = 0.001). Nonethe-
ess, especially when combined with measures of model prediction
erformance (confusion error rates), complexity metrics provided

mportant insights into model parsimony as one criterion for model
election.

.4.2. Prediction performance metrics
Although a number of prediction performance metrics are avail-

ble (also see Section 3.4.3), some have more desirable properties
han others. For example, Lobo et al. (2008) cautioned that the stan-
ard AUC metric may  oversimplify error analysis because AUC is

sually based on binary outcomes, ignores continuous probability
esults, and weights errors of omission and commission equally.
ndeed, ROC curves based on different thresholds of acceptable
rror may  yield different AUC values. Also concerned for the rigid
g outcome states. states.

nature of standard AUC calculations, Phillips and Elith (2010) pro-
vided a new tool, the presence-only calibration plot, for calibrating
presence–absence models; their approach may be useful when
dealing with bias from incomplete or incorrect absence data.

Allouche et al. (2006) compared the performance of TSS, AUC,
and Cohen’s kappa, and concluded that TSS and AUC should be
favored over kappa because kappa is more limited by its undue sen-
sitivity to prevalence of events. However, TSS and Cohen’s kappa
are calculated only from a 2 × 2 confusion table which greatly limits
their applicability.

Among 5 main prediction performance metrics used with the 36
marten case example models, covariate-weighted confusion error
was highly correlated with total confusion error (Pearson r = 0.93,
Bonferroni P < 0.001) not surprisingly because the model variants
included many of the same covariates, whereas the other perfor-

mance metrics were uncorrelated, with spherical payoff being the
most different of the set (Fig. 8). In the fuller context of confusion
error rates also split by age class (Table 2), BIC also was uncorre-
lated with the other metrics. Although these outcomes are specific
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o the marten models tested and could differ with other model
ets, they suggest that several metrics can provide complementary
nformation on model performance.

.4.3. PPD uncertainty metrics
The metrics discussed here – Bayesian credible intervals, PPCI

nd the certainty envelope, and the Gini coefficient – provide com-
lementary information for evaluating uncertainty of PPDs. Among
he 16 example models from the polar bear case, PPCI and the Gini
oefficient were highly correlated (Fig. 9), although not linearly so,
ith PPCI being more sensitive at lower to middle values. Each met-

ic exhibited a similar response behavior to specified outcome state
robabilities (Fig. 10). However, PPCI may  be a better general choice
ver the Gini coefficient for evaluating BN model outcome uncer-
ainty because PPCI may  be a more sensitive indicator (Fig. 9) and
t is far easier to calculate.

.5. Utility of alternative metrics of BN model performance and
ncertainty

The various metrics discussed here collectively provide a use-
ul set of complementary insights into BN model performance and
ncertainty. Depending on the modeling objective and the analysis
r decision that the model is intended to inform, alternative met-
ics provide utility in various ways (Table 3). The modeler needs
o be aware of assumptions and caveats when applying any such

etric.
Most of the model performance metrics discussed here – partic-

larly AUC, spherical payoff, TSS, Cohen’s kappa, PPCI, and the Gini
oefficient – can be rescaled to range [0,100] and thus viewed as
ercentages of best possible model performance, with lower val-
es denoting greater uncertainty (error rates) of model predictions.

n some cases, it may  then be useful to denote such rescaled val-
es with word descriptions such as used by the Intergovernmental
anel on Climate Change to denote certainty of predictions of future
limate effects (Mastrandrea et al., 2010). E.g., normalized PPCI val-
es, rescaled as 0–100 percentages, could denote certainty levels
f PPDs as follows: 0–20 = highly uncertain, >20 to 40 = moderately
ncertain, >40 to 60 = about as certain as not, >60 to 80 = moderately
ertain, and >80 = highly certain.

One final caution is to remember that composite indices, such
s PPCI and the Gini coefficient, mask individual state outcomes, so
hose, too, should be presented.

. Conclusions

This summary has by no means exhaustively surveyed all pos-
ible metrics and methods useful for evaluating performance and
ncertainty of BN models (e.g., Ponciano et al., 2009; Speigelhalter
t al., 2002; Van Allen et al., 2008). For example, BN models may  best
e developed stepwise using initial expert knowledge, rigorous
eer review and model reconciliation, testing model performance
ith empirical data, updating the probability structure with data,

nd retesting (Marcot, 2006). Additional methods have been devel-
ped for evaluating model parameter uncertainty and structural
ncertainty (e.g., Castillo et al., 1998; Williams, 2011). A rather
ast literature exists on general statistical methods and algorithms
or classification analysis and modeling uncertainty (e.g., Ayyub
nd Klir, 2006; Hand, 1997). Also, a number of other performance
etrics not discussed here are available within BN modeling pro-

rams, such as the quadratic (Brier) score (Atger, 2004), logarithmic
oss and log likelihood ratio scores (Dlamini, 2010), and surprise

ndexes found in Netica. However, most of these other approaches
re redundant with the metrics I have described in this paper.

BN models can be used for a variety of purposes including
rediction, scenario analysis, diagnosis, data mining, summarizing
lling 230 (2012) 50– 62 61

knowledge and identifying key data gaps, and aiding individual and
collaborative decision-making. No one set of metrics of model per-
formance and uncertainty pertain to all such uses but some are
more universally applicable than others. Metrics of model sensitiv-
ity are of value when constructing models based largely or solely on
expert knowledge, and when exploring the underlying probability
structure of models induced from empirical data. Case file simula-
tion and influence analysis are useful for evaluating scenarios and
determining the bounds of how management control on selected
inputs affect expected outcomes.

Metrics of model complexity reflect parsimony and are appli-
cable to models of all purposes. One should not use complexity
metrics alone, however, without also considering model perfor-
mance, because overly simple and highly parsimonious models
could suffer from undue structural uncertainty (Walters, 1986)
where key variables or relationships are ignored. The aim should be
to reasonably balance performance with parsimony, and to neither
oversimplify nor overfit models to produce the best-performing
outcome for a limited data set.

Metrics of prediction performance generally pertain to situa-
tions where independent empirical data are available by which
to test model accuracy. In the absence of such test data, one
could apply performance metrics with historic data in the sense
of hindcasting, although adjusting a prediction model to fit his-
toric patterns is more akin to calibration than validation. One could
also generate a case data set based on polling domain experts not
involved in the construction of a prediction, and test model perfor-
mance against these expectations, although again this may  serve
to calibrate a model to expert judgment rather than to validate it
against real-world outcomes. Generally, the modeler could select
a small set of metrics of prediction performance that provide com-
plementary measures of model accuracy, such as use of spherical
payoff, BIC, and conditional probability-weighted confusion error
rate.

As for metrics of model outcome uncertainty, I suggest use of
PPCI and the associated certainty envelope over the Gini coefficient
which is more complicated to calculate and may be less sensitive
to variations in the distribution of posterior probabilities among
outcome states. PPCI can used with BN models developed from
expert knowledge, empirical data, or any combination, and does
not require independent data sets.

In general, the prudent modeler would do well to identify early
in the model-building process the sorts of metrics to be used for
evaluating model performance and uncertainty, so as to avoid
post hoc selection bias. Also, metrics of performance and uncer-
tainty can be used to help select the best model among a set of
competing models in a multi-model approach (Monte, 2009). The
main lesson is that rigorous adherence to methods and metrics
of evaluating BN model performance and uncertainty is critical
to ensuring credibility, acceptance, and appropriate application of
model results, especially when used to inform decision-makers in
a risk management context (Ascough et al., 2008). Prediction error
and uncertainty should be viewed as information too, for identi-
fying key parameters and advising difficult decisions of resource
management and allocation.
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