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A B S T R A C T

Bayesian network (BN) modeling is a rapidly advancing field. Here we explore new methods by which BN model
development and application are being joined with other tools and model frameworks. Advances include im-
proving areas of Bayesian classifiers and machine-learning algorithms for model structuring and para-
meterization, and development of time-dynamic models. Increasingly, BN models are being integrated with:
management decision networks; structural equation modeling of causal networks; Bayesian neural networks;
combined discrete and continuous variables; object-oriented and agent-based models; state-and-transition
models; geographic information systems; quantum probability; and other fields. Integrated BNs (IBNs) are be-
coming useful tools in risk analysis, risk management, and decision science for resource planning and en-
vironmental management. In the near future, IBNs may become self-structuring, self-learning systems fed by
real-time monitoring data. Such advances may make model validation difficult, and may question model
credibility, particularly if based on uncertain sources of knowledge systems and big data.

1. Introduction

Bayesian networks (BNs) are directed acyclic graphs that link
variables by conditional probabilities, where model outputs are prob-
abilities calculated using Bayes' Theorem (Fenton and Neil, 2012; Koski
and Noble, 2011). BN modeling is useful for data mining, determining
and explicitly displaying the relationship among variables, representing
expert knowledge and combining expert knowledge and empirical data,
and identifying key uncertainties (Cheon et al., 2009; Hanea et al.,
2010; Landuyt et al., 2013). Outputs are typically expressed as prob-
abilities of various states, which lends well to decision-science ap-
proaches to risk analysis and risk management (Aalders, 2008; Farmani
et al., 2012).

General network structure of BN models is highly flexible, leading
many researchers to find new areas of application. As examples, BNs
have become popular in environmental management for projecting
potential impacts of proposed projects (Krüger and Lakes, 2015),
forecasting impacts of environmental disturbances such as fire
(Dlamini, 2010) and climate change (Sperotto et al., 2017) and pro-
viding a basis for making environmental management decisions (Barton
et al., 2012). Many examples are available of the use of BNs in a wide
variety of other environmental and resource management contexts,
such as management of groundwater (Giordano et al., 2013), recreation

impacts (Fortin et al., 2016), and green energy production (Carta et al.,
2011). If the BN contains no random variable, then the outcome gen-
erated is fixed, i.e., deterministic, for a given set of priors, else the
outcome is stochastic. BNs can be made stochastic by introducing
random deviates as part of formulae within nodes. Variables also can be
described with formulae combining values of parent nodes, such as
used by Steventon et al. (2006) in assessing viability risk of a rare
seabird. Further, variables can be denoted with continuous ranges, ra-
ther than discrete state conditions, such as used by Hradsky et al.
(2017) to determine impacts of fire and other stressors on the dis-
tribution of terrestrial wildlife.

BNs are a highly useful tool for depicting and modeling current
knowledge, such as with initial representation of a system or problem to
gain a better understanding and perspective on uncertainties and
complexities so as to help advise managers and decision-makers. BNs
provide a robust statistical framework when little data are available. An
example is in the context of environmental modeling with time-critical
situations with scant available data, such as active monitoring of key
energy infrastructures (Guerriero et al., 2016) and surveillance of en-
dangered species (Koen et al., 2017).

Increasingly, BNs are being integrated with other modeling con-
structs and tools, such as geographic information systems (GIS) and
remote sensing databases. In this paper, we explore these new avenues
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of how BN model development and application are being joined with
many other tools and model frameworks for a variety of environmental
assessment and management objectives. We briefly review the current
state and recent advances of BN modeling, and then provide examples
of an emerging new era of integrating BN models with other frame-
works and tools. Lastly, we present a vision of next advances to come,
concluding with a perspective on ensuring scientific and decision-
making credibility, with cautions on accelerated model advancements.

2. The cutting edge of BN modeling

The field of BN modeling is advancing swiftly with the number of
journal articles using BNs continuing to rise, including a recent era of
exponential growth (Marcot, 2017). Recent developments in BN mod-
eling are reviewed in the following sections.

2.1. Recent advances in BN model structure and applications

A number of recent advances in BN model structure and application
have followed a diverse track of topics, generally related to identifying
and exploring system dynamics and aiding decision management
(Fig. 1).

Classification. One area of resurgence is in new approaches to the
classification problem, viz., Bayesian classifiers and machine learning.
BN classifiers include a wide variety of algorithms starting with naive
Bayes and variants thereof (Bielza and Larrañaga, 2014). Related to this
are algorithms for Bayesian learning of probability structures from
empirical data (e.g., Tsamardinos et al., 2006; Do and Batzoglou, 2008).

Latent variables. A common problem in ecological or environmental
modeling is the influence of latent variables, which are effects inferred
from the relation among observed variables but which are not directly
observed (Marcot, 2017). Machine-learning algorithms used in para-
meterizing the probability values in BN models, such as the expectation
maximization algorithm (Do and Batzoglou, 2008), can, to some de-
gree, account for the influence of latent variables and missing data
(Lauritzen, 1995).

A related problem is how to validate BN models developed entirely
from expert elicitation with no case-file data by which to structure or
parameterize the model. Such models portray logical or causal relations
among variables as inferred by expert knowledge, but these relations
often are influenced by unspecified, latent variables (de Waal et al.,
2016). Pitchforth and Mengersen (2013) proposed methods for evalu-
ating confidence in the validity of such models even in the dearth of
empirical data and presence of latent variables, thus providing a

validation framework for expert-elicited BNs. de Waal et al. (2016)
suggested several approaches to handling latent variables in BNs, in-
cluding explaining uncertainties associated with latent variables,
parameterizing the probability values of BNs so as to directly address
the roles of latent variables, and addressing uncertainty in model va-
lidation.

Depicting model confidence. Although BN models explicitly in-
corporate uncertainty, there is no common method for depicting and
quantifying the degree of confidence in the underlying probability va-
lues of the model and in the resulting posterior probability calculations.
That is, uncertainty measures can be inferred from the probability
distributions of states calculated in the model, but these are not ne-
cessarily the same as the degree of confidence (lever of certainty) of
that probability distribution. Pitchforth and Mengersen (2013) char-
acterized confidence in BN model behavior as consisting of three
components of structure confidence, discretization confidence, and
parameterization confidence. For use in BN model validation, they
further adduced 7 common dimensions of validity as used in psycho-
metry: nomological, face, content, concurrent, predictive, convergent,
and discriminant validity, which, collectively, pertain to the degree of
concordance within accepted norms and credibility within a particular
discipline.

A more quantitative method of depicting BN model confidence, as
developed by Van Allen et al. (2008), entails estimating error bars
around posterior probability calculations from BNs, which then depict
the degree of uncertainty (or confidence) in model outcomes. Error bars
for BNs are termed credible intervals, which provide the range of model
outcomes within a specified probability level (Marcot, 2012), but which
are not often reported in BN modeling projects. Such error bars should
not be confused with frequentist confidence intervals. Hamilton et al.
(2015) used credible intervals to measure the strength of the relation-
ship between suitability of habitat of a crayfish and environmental
predictor variables.

Links to GIS. Probability outcomes from BN models for evaluating
local conditions have been used as input to GIS systems to create maps
depicting habitat quality of wildlife species (Raphael et al., 2001;
Havron et al., 2017). Kininmonth et al. (2014) presented a model which
combined spatial datasets, spatial models, and expert opinion in an
integrated BN-GIS structure for evaluating boating damage to the Great
Barrier Reef of eastern Australia. Dlamini (2010) developed a BN-GIS
model that uses geographically-referenced remote sensing MODIS data
to analyze wildfire in Swaziland. BN programs that integrate or inter-
sect with GIS include GeoNetica® (Norsys Inc.), HUGIN® (HUGIN Expert
A/S), and Ecosystem Management Decision Support (EMDS, Reynolds
et al., 2014) that integrates the GeNIe BN modeling platform with two
GIS components of ArcMap® (Esri) and open-source QGIS. Gonzalez-
Redin et al. (2016) BNs linked to GIS to map trade-offs of ecosystem
services in the French Alps to inform planning decisions. Several pro-
jects have explicitly integrated GIS and BN modeling frameworks, such
as the QGIS plug-in for BNs developed by Landuyt et al. (2015) and the
integration of the GeNIe BN modeling framework into the ArcGIS-based
Ecosystem Management Decision Support system (emds.mountain-
viewgroup.com).

Dynamic Bayesian networks. Other recent variations on the tradi-
tional BN modeling theme include dynamic Bayesian networks (DBNs)
that model a time series of conditions and contingencies, such as with
oscillating predator-prey dynamics (Fig. 2). DBNs typically contain
feedback loops which are not allowed in the directed acyclic graph
structure of BNs, but can be modeled when BNs are time-expanded so
that the entire BN structure is replicated for different time periods so
that the links become acyclic. In some cases, DBNs have been made
spatially explicit by integrating with geographic information systems
(GIS; e.g., Chee et al., 2016). A variant of DBNs are those operating in
real time in response to discrete or continuous inputs, such as for pre-
dicting highway crashes (Hossain and Muromachi, 2012) and in ana-
lyzing gene networks (Kim et al., 2003). New approaches to structuring

Fig. 1. Examples of various Bayesian network (BN) modeling objectives, and
associated categories of recent advances in BN model applications and in-
tegration (see Table 1 for abbreviations).
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DBNs combine methods from static and dynamic networks (Vlasselaer
et al., 2016). Uusitalo et al. (2018) used DBNs with hidden variables to
model major structural changes of a Baltic Sea food web, and Orphanou
et al. (2014) used “temporal Bayesian networks” (TBNs, a synonym for
DBN) to evaluate temporal relationships in clinical data for medical
diagnosis and prognosis. Their hidden variables represented un-
observed processes contributing to the changes and resulted in DBN
models that reflected known dynamics of the food web system.

Bayesian decision networks. Bayesian decision networks (BDNs) ex-
tend BN models by explicitly including decision and utility nodes (e.g.,
Barton et al., 2008). Decision nodes are deterministic nodes that depict
unique management decisions, and utility nodes are continuous nodes
that estimate a cost or benefit of a given outcome resulting from a
decision. BDNs use utility nodes to calculate overall expected values of
all costs or benefits of alternative management decisions, given the
probability structure of the model, and can be highly useful in risk
analysis and risk management arenas. For example, Loyd and DeVore
(2010) developed a BDN to advise on alternatives for management of
feral cats in the United States. Catenacci and Guipponi (2013) used a
BDN as a basis for adaptation planning to sea-level rise. A further
variation of BDNs is with dynamic decision networks (DDNs) that

essentially merge decision networks with time-expanded dynamic net-
works. DDNs were developed by Murray et al. (2004) to guide selection
of teaching tutorials, and by Penman et al. (2015a) to advise on redu-
cing risk of loss of homes to wildfire. BNs have also been used to assess
value of information to optimize resource use decisions, such as the
fisheries industry (Kuikka et al., 1999).

Depicting causality in structural equation models. BN modeling has
been compared to structural equation modeling (SEM) in that both can
be used to depict causal networks and influences and can analyze de-
gree of causality (Pearl, 1998, 2000). The two approaches differ in that
SEM is a general suite of statistical tools usually using frequentist,
multivariate approaches (although some SEM approaches also support
Bayesian estimation), whereas BNs use conditional probabilities and
Bayes' theorem. A main difference is that SEMs are purely statistical
tools developed, for example, to test hypotheses or to test whether an
assumed causal relation in the graph is significant, whereas BNs are
probabilistic models (trainable by data) mainly for investigating the
consequences of conditions or events on outcomes, or deducing causal
conditions resulting in an outcome.

More recently, Li et al. (2018) compared and combined BN and SEM
modeling to evaluate the interactive influence of land use and climate

Fig. 2. Example of a dynamic Bayesian network of a dampened oscillating predator-prey system of Canadian lynx (Lynx canadensis) and snowshoe hare (Lepus
americanus), demonstrating (a) the collapsed model with feedback loops and (b) the model expanded to 4 time intervals showing population interactions (based on
O'Donoghue et al., 1997).
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change on stream macroinvertebrates. They first used SEM to develop a
conceptual influence diagram of causal effects, that is, the network
structure of variables and their linkages, and then they built prediction
and diagnostic BNs from the same conceptual model. Using SEM helped
identify and justify the links used in the BN models. Their results sug-
gested that modeling all causal factors together in the SEM conceptual
model and in the subsequent BN model provided a more robust un-
derstanding of how positive effects from climate change could mollify
negative influences from land use.

Neural networks. A somewhat different variant of BN modeling ap-
pears in Bayesian neural nets, that is, using Bayesian learning to de-
termine neural network node weights. Neural networks are typically
trained using a variety of approaches including variants of gradient
descent and least-squares methods to minimize loss functions of vari-
ables singly or in conjugation. Using BNs can bring greater efficiency in
adjusting node weight parameters based on prior knowledge. Bayesian
neural networks have been used to forecast energy load requirements
(Lauret et al., 2008), solar irradiation (Yacef et al., 2012), stock market
performance (Ticknor, 2013), and internet traffic loads (Auld et al.,
2007).

Continuous Bayesian networks. Another area of recent interest and
progress is in developing continuous BN models where quantitative
variables are not discretized into exclusive state ranges but instead are
represented by continuous values such as equations or statistical dis-
tributions. Continuous BNs can be constructed using programming tools
such as UNINET (Cooke et al., 2007; Delgado-Hernández et al., 2012),
WinBUGS (Kery, 2010), AgenaRisk® (Neil et al., 2007), Hugin® (Madsen
et al., 2003), and GeNIe (Druzdzel, 1999). Other BN modeling and
graphical modeling software also can deal with continuous nodes1 if the
multivariate normal is assumed (A. Hanea, pers. comm.)

Hybrid Bayesian networks. Some researchers have developed BN
models with both discrete and continuous variables where the latter are
not discretized (Aguilera et al., 2010; Castillo et al., 1998; Driver and
Morrell, 1995). These types of models are referred to as hybrid BNs
(HBNs; Hanea et al., 2006). A special case of HBNs, called non-para-
metric BNs (NPBNs), was reviewed by Hanea et al. (2015). NPBNs were
initially devised for continuous-only BNs but are used in situations of
HBNs as well. Hanea et al. (2010) developed a NPBN methodology with
data mining to develop prediction models. Hradsky et al. (2017) used
NPBNs to model a presence-absence continuous response of wildlife to
fire age classes and terrestrial vegetation classes depicted with discrete
variables.

Object-oriented Bayesian networks. A further area of recent explora-
tion is with object-oriented Bayesian networks (OOBNs) and dynamic
object-oriented Bayesian networks (DOOBNs) (Bangsø et al., 2004;
Benjamin-Fink and Reilly, 2017). For example, OOBNs and DOOBNs
have been used to model health impacts of cyanobacteria blooms
(Johnson et al., 2010), viability of populations of cheetahs (Acinonyx
jubatus) in Namibia (Johnson et al., 2013), and issues of water resource
management (Phan et al., 2016). The tools Hugin® and AgenaRisk®

provide for true OOBN modeling, and GeNIe® also can be used as such
although it is not a true OOBN framework.

Agent-based modeling. Related to OOBNs is the merging of agent-
based models and BNs. Agent-based models (An, 2012) are simulations
of the dynamics, such as movement patterns, of individual objects.
Nielsen and Parsons (2007) developed a model of consensus-building
where individual agents were represented by BNs that expressed a
range of possible agreements. Sun and Müller (2013) presented a BN
agent model to explore the economics of ecosystem services and land-
use decision-making.

State-and-transition modeling. Another area of integration is with
state-and-transition models (STMs) that are used to project future
proportions or amounts of conditions, such as landscape vegetation

conditions and species responses, under known or hypothesized rates of
change (Mason et al., 2017). STMs project future conditions, such as
area covered in vegetation type categories, by multiplying a matrix of
current area in each category by a matrix of probabilities depicting
transitions to the same or other categories (e.g., Jorgenson et al., 2015).
In a hybrid STM-BN model, transition probabilities are estimated from
calculations in the BN network that account for environmental influ-
ences on each vegetation type category. Bashari et al. (2009) developed
an integrated STM-BN model, as expanded upon by Nicholson and
Flores (2011), to inform management decisions in rangelands of
Queensland, Australia. Chee et al. (2016) integrated STMs and BNs in a
geographic information system (GIS), with object-oriented concepts, to
model spatial and temporal changes in an Australian woodland and a
wetland in Florida.

Quantum Bayesian networks. BNs are being increasingly used in the
area of quantum information theory as quantum Bayesian networks
(QBNs; Tucci, 1995). QBNs are constructed to represent outcomes that
deviate from, and are paradoxical to, classical probability calculations.
Examples include when outcomes are dependent on the sequence of
inputs (priors and parent nodes in a BN); when human decision-making
deviates from dominant probability outcomes in a BDN; when a system
can result in> 1 dominant probability outcome state; and other si-
tuations. Such outcomes could be modeled in traditional BNs by in-
cluding latent variables but such models quickly become overly com-
plex and serve only to describe specific conditions and outcomes, not to
serve as predictive and explanatory models.

Generally, in QBNs, classical conditional probability tables using
Bayes calculus are replaced by quantum probability amplitudes (a
complex number function that describes the behavior of a system).
Moreira and Wichert (2018) developed a decision-based QBN with
quantum probability amplitudes to demonstrate how prediction of
some aspects of human decision-making is more efficient than with a
traditional BN with latent variables. Similarly, Trueblood et al. (2016)
used a QBN approach to model how human judgment can deviate from
classical probability in the face of high uncertainty and imperfect in-
formation about causality of a system. Busemeyer and Trueblood
(2009) explored the use of QBNs in quantum theory to model how
different sequences of measurements can affect the probabilities of
system outcomes. Leifer and Spekkens (2013) developed a QBN fra-
mework for depicting how quantum conditional states can result from
the influence of two systems at one time or from one system at two
times. Other formulations and applications of QBNs are found in the
literature, although at present there does not seem to be any generally
available software by which QBNs can be constructed.

Power PC theory and causal BNs. Power PC (“probabilistic contrast”)
theory states that a system outcome is the sum effect of the relative
power of observed and unobserved causal relations which can be de-
picted and partitioned mathematically (Cheng, 1997; Norick and
Cheng, 2004). In applying power PC theory, Lu et al. (2008) demon-
strated how the relative influence of different, independent causes can
be determined empirically and can be represented in Bayesian causal
networks.

Here, we have covered a range of significant recent advances in
application of BNs. Still other variations and new approaches to BN
modeling continue to appear in the literature.

2.2. Beyond the network: a new era of integration

BN models of various forms have been increasingly used in a variety
of applications. They are also being specifically integrated with other
modeling constructs, which we refer to here as integrated Bayesian
networks (IBNs; Johnson et al., 2010). IBNs can be defined as BN
structures that are explicitly embedded within the framework of other
modeling constructs, instead of just being applied to some area of in-
quiry as reviewed in the previous section. Examples of IBNs include
assimilating BNs in structured decision-making frameworks, agent-1 https://www.cs.ubc.ca/∼murphyk/Software/bnsoft.html.
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based models, and state and transition models (Table 1). IBNs are
crafted generally to apply the probabilistic basis of BNs to new areas of
application and research such as dynamic and stochastic simulation
modeling.

IBNs are also becoming useful tools in risk analysis, risk manage-
ment, and decision science, such as in environmental resource planning
(Johnson and Mengersen, 2012; Fraser et al., 2017) and for depicting
how deep uncertainty affects policy decisions (Aven, 2013; Cox, 2012).
Janssens et al. (2006) developed an IBN that combined BNs and deci-
sion trees for developing decision rules in transportation management.
QGeNIe Modeler® (BayesFusion, LLC) has a graphical user interface that
provides for rapid prototyping of decision models in a BN environment.
Some BN modeling platforms such as Netica® (Norsys Inc.) and Hugin®

provide application program interfaces (APIs) to facilitate integration
links to other programs such as geographic information systems which
can facilitate their use in integrated risk analysis and structured deci-
sion-making under uncertainty (e.g., Barton et al., 2008).

An emerging area is the development of IBNs operating from real-
time monitoring data. For example, Maglogiannis et al. (2006) have
proposed a patient-health risk analysis system using IBNs operating
from vital sign monitoring data. Their vision is to produce a real-time
system for homecare telemedicine. Penman et al. (2015b) developed a
fire danger rating system that updated daily with meteorology fore-
casts, and as new fires appeared in the landscape the model auto-
matically updated the risk projections. Vagnoli et al. (2017) proposed a
real-time, IBN-based system to monitor the structural integrity of
railway bridges in Europe. Koen et al. (2017) developed an IBN model
to monitor the poaching (illegal hunting) of rhinoceroses in Kruger
National Park, South Africa, which is being implemented as a real-time
management tool.

3. Things to come

The field will continue to advance more rapidly into uncharted
territory as IBNs become more sophisticated. Future IBN research foci
will include substantial cutting-edge advancements in the many areas of
integration reviewed above. Currently, IBNs are essentially static;
however, we expect that in the near future, IBNs will emerge that are
self-updating and self-improving, and that will learn from real-time
continuous input of environmental monitoring data. Being able to dy-
namically update BN conditional probability values with new data (e.g.
using an expectation maximization algorithm), and to continually re-
calculate posterior probabilities, are quite feasible with existing soft-
ware and hardware. Some current IBNs do automatic recalculation of
posterior probability outcomes with new input data feeding the models,
but here we are referring also to the basic structure and underlying
conditional probability tables themselves being created anew and

updated with machine-learning tools. The purpose of this would be to
continually refine the context, accuracy, and robustness of the models,
which is a fundamental precept and advantage of Bayesian statistical
approaches that improve model predictions from prior data. Some as-
pects of this have appeared in the application of BNs in areas of finance
(Giudici and Spelta, 2016; Garvey et al., 2015), and medical diagnosis
and decision-support (Constantinuo et al., 2016). In the future, we
envision self-creation of IBNs based on emergent information from
crowdsourced data (Park and Budescu, 2015).

Also to come will be the further integration of BNs with expert
system knowledge bases, particularly using fuzzy-logic or neural-net
forms of knowledge-representation and machine-learning algorithms.
In the past, control-rule-based expert systems used confidence factors or
scoring rules (Zohar and Rosenschein, 2008), e.g., indices as provided
by the expert and scaled [1,10], to rank the likelihood or the credibility
of a particular inference or outcome. Today, the BN modeling shell
BayesiaLab® (Bayesia S.A.S.; Conrady and Jouffe, 2015) averages con-
ditional probability values from multiple experts and weights the values
by the product of confidence in, and credibility of, the values as scored
by each expert.

4. Conclusions and perspectives

What are some of the main cautions and caveats in this new era of
IBNs? Here we address quandaries of ensuring validity and credibility
of IBNs that are becoming increasingly complex in construction and
interpretation, particularly as they are induced from automated and big
data sources.

4.1. Ensuring a future of validity and credibility

It will be important to ensure the validity and credibility of in-
creasingly-complex expert-based IBN systems (Kleemann et al., 2017),
particularly as they interact with human social systems, as they guide
resource management decisions, and as they operate with greater au-
tonomy. As IBNs become more complex, it will become more proble-
matic to create and test simple, intuitive, and understandable influence
diagrams and mind maps that chart their structures, logic, and opera-
tion. A way around this could entail decomposing such complex sys-
tems into simpler component submodels, and testing and updating each
submodel. BNs are generally constructed as Markov processes so that
they can be dissected and reassembled without loss of information,
particularly using cutpoints in the network graph (nodes in the BN
whose removal would separate the graph.

Direct and indirect causes in process models will be increasingly
difficult to clearly identify, particularly with models having multiple
interaction terms, feedback loops, latent variables, and synergistic

Table 1
Recent advances in integration of Bayesian network (BN) modeling with other modeling constructs. Acronyms listed here are as used in the literature (see text).

Recent integration advances Purpose

Geographic information systems Bayesian networks (BN-
GIS)

Map geographically-referenced posterior probabilities generated from the BN

Dynamic Bayesian networks (DBNs) Replicate a BN structure over simulated time period to incorporate time-dynamic feedback loops and lag effects
Bayesian decision networks (BDNs) Determine potential effects and expected values of alternative management decisions in a probabilistic framework
Dynamic decision networks (DDNs) Evaluate effects and expected values of a sequence of management decisions
Structural equation modeling (SEM) Bayesian networks Use SEM to determine appropriate causal network structures for a BN
Bayesian neural networks Use BNs to determine neural network node weights
Continuous-variable Bayesian networks Avoid simplification of ratio-scale data into discretized range states
Hybrid Bayesian networks (HBNs) BNs containing both discrete and continuous (non-discretized) variables; include non-parametric BNs (NPBNs)
Object-oriented Bayesian networks (OOBNs) Treat BN variables as “objects” that can combine methods and data structures
Dynamic object-oriented Bayesian networks (DOOBNs) Conduct OOBNs in a dynamic simulation where object parameters can vary over simulated time
Agent-based Bayesian networks Treat BN variables as agents or individual entities with dynamic interactions with their environment
State-and-transition Bayesian networks (STM-BNs) Project changes in amounts and dispersions of conditions under probability distributions
Quantum Bayesian networks (QBNs) Model non-classical probability outcomes using quantum probability amplitude functions
Power PC theory in causal BNs Model causal probability structures with observed and unobserved influences, partitioning out independent causes

as additive effects

B.G. Marcot, T.D. Penman Environmental Modelling and Software 111 (2019) 386–393

390



functions among covariates and response variables. This also means
increasing difficulty in parsing out sensitivity and influence effects to
specific drivers, that is, clearly identifying key factors that most influ-
ence outcomes and for which management might have greatest un-
certainty and greatest (or least) control. The result may limit their ac-
ceptance and adoption in management situations if users do not
understand and trust the models and if the models have limited face
validity. This can be a major issue with decision networks and use of
models in real time, and with models intended to guide planning and
management of resources with high opportunity costs. Support for the
model, as with advances in validation methods and frameworks as
discussed above, is needed. Some work advancing methods of sensi-
tivity analysis of BN models may show promise for further development
and application on increasingly complex model structures (e.g., global
sensitivity analysis methods of Li and Mahadevan, 2017).

Increasing complexity of IBNs will carry increased difficulty in
model calibration, testing, validation, and updating, eventually ne-
cessitating new heuristic approaches and algorithms that can wade the
swamp of big data (Spiegelhalter, 2014; LaDeau et al., 2017; Lv et al.,
2014). Lewis et al. (2018) further warned that developing wildlife
biology models even with high-quality big data sets raises concerns for
how opaque modeling algorithms can lead to complex problems of data
management, exploratory data analysis, data-sharing, and reproduci-
bility. Paradoxically, big data sets with many variables often are sparse
in terms of replicated conditions and variable combinations (Hastie
et al., 2015). Although BN models induced from big data may fit well,
that is, with high calibration accuracy, they may lack robustness and
perform poorly because of this sparsity, that is, the models may have
low independent validation accuracy and be overfit. Also, BNs built on
big data collected through citizen science initiatives, which are be-
coming increasingly popular in many topic areas, should be carefully
vetted for the accuracy of those data (Kosmala et al., 2016), or else the
models and their interpretations may be incorrect, biased, and mis-
leading.

Particularly with self-generating and self-updated systems, IBNs will
be no more trustworthy than the data on which they are based and on
the opacity of the algorithms used to structure their networks and
parameterize their probabilities. In the end, the validity and credibility
of IBNs are inextricably linked to those of the data and the methods on
which they are based and created. At stake is clear demonstration of
expert knowledge, empirical data, and model simulations, and ulti-
mately of model validity, operational robustness, and the credibility of
the modeling science itself.

Despite potential worries over the testing and validity of big-data-
sourced IBNs, and the quickly-evolving environments in which IBNs are
constructed, their strengths will remain in “what if?” scenario ex-
ploration, and in being able to combine soft and hard evidence, that is,
expert knowledge and empirical data. Even with an exponential in-
crease in publicly available information, combining expert knowledge
with data is best conducted so as to detect and counteract any spurious
correlations that may be indicated by machine learning algorithms.
Models that are structured and parameterized solely by use of “blind,”
automatic methods such as unguided machine learning algorithms,
without human oversight, lose the key advantage of the Bayesian ap-
proach to updating human knowledge and insight.

4.2. Cautions and caveats in the new era of integration

We have tried here to chart some routes that development of IBN
systems may be taking, and some cautions indicated in this fast-evol-
ving era (Salmond et al., 2017). Soon to come will be dynamic and self-
modifying and even self-creating IBNs using “big data” garnered from
automated monitoring (e.g., environmental and Earth Science remote
sensing data; Li et al., 2016), citizen science initiatives, and even
crowdsourced information sources. We ask, to what degree should we
trust such models? For, in the end, the knowledge source and expertise

that may serve to generate and fuel IBNs may become a fully realized
global, emergent artificial intelligence. If so, how shall the models'
veracity be determined when their source becomes non-human?

BNs developed from empirical data often can be tested using ex-
isting cross-validation and jackknifing algorithms. However, the va-
lidity of BNs developed from expert knowledge is more difficult to
determine if independent data sets by which to test the models are
unavailable, or if specific combinations of variables in big data sources
are sparse; in such cases, peer review of the model at various stages of
development is essential to establish credibility and conformity with
accepted precepts. But determining the external validity of self-orga-
nizing and self-updating BNs that are developed with deep-learning
algorithms in real time from big data sources, including citizen-science
and crowd-sourced data (especially the multitude of Internet blog
sources and news posts), without independent testing or review, may be
most problematic and will require new approaches to scientifically
evaluating their veracity. This will become one of the greater challenges
in the fast-evolving new era of BN model integration.
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