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CONFIDENCE — HOW TO DENOTE
CONFIDENCE IN EXPERT JUDGMENT USED
TO DEVELOP PROBABILITY STRUCTURES?

CONTROL — HOW TO IDENTIFY
MANAGEMENT CONTROL AND INFLUENCE

CONFIDENCE OF DECISIONS?
CONTROL
| CAUSE CAUSE — HOW TO DETERMINE
I CAUSALITY?
|
This presentation will delve into three key areas pertaining to Bayesian network modeling: Confidence here refers to using expert judgment for developing Bayesian network
confidence, control, and cause. probability structures.

Control here refers to identifying how management can know about the degree to which
they can control outcomes of their decisions.
Cause here refers to how Bayesian network models can truly depict causal structures.




CONFIDENCE — HOW TO DENOTE
CONFIDENCE IN EXPERT JUDGMENT USED
TO DEVELOP PROBABILITY STRUCTURES?

CONTROL — HOW TO IDENTIFY
MANAGEMENT CONTROL AND INFLUENCE
OF DECISIONS?

CAUSE — HOW TO DETERMINE
CAUSALITY?

Let’s begin by exploring the question of confidence.
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“l know nothing about the subject, .
but I'm happy to give you my expert opinion.”

I would like to lobby for use of the term “expert knowledge” instead of “expert opinion.” If
we build Bayesian network models at least in part from expert’s input, the models
should be rigorous, testable, credible, and hold up to peer review scrutiny. | have
come to avoid using the term “opinion” in this context, which sounds far more
capricious and arbitrary.




KEY FIRST STEP: WHAT’'S THE OBJECTIVE? KEY FIRST STEP: WHAT'S THE OBJECTIVE?

prediction - possible future outcomes based on initial conditions
forecast - most likely future outcome based on initial conditions

projection - possible future outcomes based on changing future
conditions

scenario analysis - implications of hypothetical situations

diagnosis - determine potential causes of a known or specified
condition or outcome

data mining - find patterns in big data

summarize knowledge - synthesize what we think we know
identify key data gaps — factors, interactions with greatest
influence on outcomes

mitigation — i.d. alternative conditions that could lead to a desired
outcome

aid individual or collaborative decision-making — risk analysis
& risk management

The major first stage in Bayesian network modeling (or any modeling project) should There can be a very wide array of potential objectives and uses for Bayesian network
always be to clarify the objective. models. And no one model can do it all. | have told my students and colleagues that
they should pick their top three objectives, then prioritize those, then pick the top ONE
from that list.




NEXT STEPS IN MODEL-BUILDING

Next, let’s consider a general framework for model-building steps and stages ...
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This graphic depicts a general framework for model-building steps that | had evolved over
time, and published. It entails use of expert knowledge to build the first (“alpha”) level
model, then subsequent uses of peer review, and testing of model sensitivity, accuracy, and
validation.

Source: Marcot, B. G. 2006. Characterizing species at risk I: modeling rare species
under the Northwest Forest Plan. Ecology and Society 11(2):10. [online] URL:
http://www.ecologyandsociety.org/vol11/iss2/art10/.
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NEXT STEPS IN MODEL-BUILDING

Develop a simple influence diagram representation of the
key factors and linkages

Let’s go through the various steps in building a Bayesian network model under this
framework. (The text in these next series of slides provides the main points.)

11

NEXT STEPS IN MODEL-BUILDING

Develop a simple influence diagram representation of the
key factors and linkages
Document the influence diagram
data, info sources, pubs, consultations used
identify what each arrow represents — correlation, causation
peer review
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NEXT STEPS IN MODEL-BUILDING

Develop a simple influence diagram representation of the
key factors and linkages
Document the influence diagram
data, info sources, pubs, consultations used
identify what each arrow represents — correlation, causation
peer review
Clearly define each variable (node) & their states
input nodes
intermediate nodes (latent variables, summary nodes)
output nodes
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NEXT STEPS IN MODEL-BUILDING

Develop a simple influence diagram representation of the
key factors and linkages
Document the influence diagram
data, info sources, pubs, consultations used
identify what each arrow represents — correlation, causation
peer review
Clearly define each variable (node) & their states
input nodes
intermediate nodes (latent variables, summary nodes)
output nodes
Document probability values
basis, source of info, methods used to derive
what do they represent? - frequencies, relative outcomes
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NEXT STEPS IN MODEL-BUILDING

Sensitivity analysis
underlying probability structure of the model (inputs set to
default prior probabilities)
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NEXT STEPS IN MODEL-BUILDING

Sensitivity analysis
underlying probability structure of the model (inputs set to
default prior probabilities)

Influence analysis
inputs w/ most influence on outcome (for given scenarios)
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NEXT STEPS IN MODEL-BUILDING

Sensitivity analysis
underlying probability structure of the model (inputs set to
default prior probabilities)
Influence analysis
inputs w/ most influence on outcome (for given scenarios)
Calculate metrics of model complexity
no. variables (nodes)
no. of links
no. of node cliques
no. of probabilities
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NEXT STEPS IN MODEL-BUILDING

Sensitivity analysis
underlying probability structure of the model (inputs set to
default prior probabilities)
Influence analysis
inputs w/ most influence on outcome (for given scenarios)
Calculate metrics of model complexity
no. variables (nodes)
no. of links
no. of node cliques
no. of probabilities
Calculate metrics of model performance
classification error rates (confusion tables)
many metrics available (AUC, TSS, spherical payoff, etc.)

18




NEXT STEPS IN MODEL-BUILDING

Update part or all of the model using case data
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NEXT STEPS IN MODEL-BUILDING

Update part or all of the model using case data
Calculate metrics of uncertainty in posterior probability
distributions

Bayesian credible intervals

normalized Gini index

other metrics (posterior probability certainty index, certainty
envelope)
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NEXT STEPS IN MODEL-BUILDING

Update part or all of the model using case data
Calculate metrics of uncertainty in posterior probability
distributions

Bayesian credible intervals

normalized Gini index

other metrics (posterior probability certainty index, certainty

envelope)

Compare alternative posterior probability distributions

Perhaps not every model-building project needs to go through all of the steps listed in this
slide sequence, but the main steps entailing peer review and model testing and updating
most lend to ensuring scientific credibility of the final product.
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USING EXPERT JUDGMENT IN MODEL-
BUILDING

So how can, or should, expert judgment (or expert knowledge) be used in building
Bayesian network models?
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USING EXPERT JUDGMENT IN MODEL-
BUILDING

for building the initial influence diagram
for identifying conditional probabilities or other variable
relationships
iterative procedures
internal team reviews
external peer reviews

Depending on the type of model to be developed, and the availability of empirical data (or
lack thereof) by which to structure and parameterize the model, expert judgment could
play a key role in building the initial influence diagram (the “boxes and arrows” stage), and
then to identify probability structures. The more that a Bayesian network model
depends on expert knowledge, the more the model-builder should take the time
and trouble to seek internal and external peer reviews, and then reconcile the
reviews clearly by updating the model as deemed necessary.
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USING EXPERT JUDGMENT IN MODEL-
BUILDING

state the goal, objective, purpose, scope, intended use, and
intended audience for the model ...

... then ... if building the model from multiple experts ...
decide:

In working with a TEAM of domain experts, or at least with MULTIPLE experts, when
building an expert-based model, first clearly state the modeling goals etc., and then ...
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USING EXPERT JUDGMENT IN MODEL-
BUILDING

state the goal, objective, purpose, scope, intended use, and
intended audience for the model ...

... then ... if building the model from multiple experts ...
decide:

One model

Solicit probability values from
the panel via:
group consensus (e.g., Delphi
method)
guided brainstorming
polling individuals, then
combine results
simple average
weighted average or sums
parcel out submodels to
specific experts, then combine
into one model

... then decide if you want to end up with ONE model only, that would represent the
multiple experts’ collective knowledge in a single network ... OR ...
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USING EXPERT JUDGMENT IN MODEL-
BUILDING

state the goal, objective, purpose, scope, intended use, and
intended audience for the model ...

... then ... if building the model from multiple experts ...

decide:
One model > One model

Solicit probability values from Represent differences in
the panel via: expert knowledge

group consensus (e.g., Delphi develop range of model

method) structures

guided brainstorming develop range of probability

polling individuals, then values

combine results compare results to denote

simple average variation in expert judgments

weighted average or sums
parcel out submodels to
specific experts, then combine
into one model

... or if you want to potentially develop more than one model so as to depict the range of
the experts’ ideas and experience on model structure and probability parameters.
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KNOWLEDGE ELICITATION

rich literature
artificial intelligence, expert systems programming
(1970s - present)
group elicitation — expert panels
biases (e.g., motivational bias, knowledge parity, facilitator bias)

There is a rich history of publications and practices associated with expert elicitation
methods.

27

KNOWLEDGE ELICITATION — EXPERT PANELS

How to denote degree of confidence in probability values,
in Bayesian networks built from expert judgment?
feathering CPT values is an expression of uncertainty — but not
expressing confidence in the supplied probability values
expert systems have used a confidence indexing approach - [0,1]
or [0,100%]
BaysiaLab uses a confidence factor approach outside the BN
Netica uses “experience tables” — but only when inducing
probability structures from mostly empirical case files

There is also a great deal of subjectivity used in denoting expert-judgment “confidence
levels.”
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KNOWLEDGE ELICITATION — EXPERT PANELS

Real-world example: Polar Bear Science Team (7 members)
needed clear direction on resolving differences of opinions
consensus or competing models?

“round-robin” reviews and edits of CPTs

htp:

In one of my real-world examples, | led a team of 7 researchers (including wildlife
biologists, statisticians, & climate scientists) in the modeling of global polar bear
populations. We had differing ideas of the overall model structure and its probability
tables. From the start, we decided that we wanted to create one model representing the
consensus of our team, so we instituted a procedure of a “round robin” series of team
member reviews of the model, each reviewer adding their ideas and edits as it was passed
around. The final decision on amending the model was up to the team leader and myself.
Source: Atwood, T. C., B. G. Marcot, D. C. Douglas, S. C. Amstrup, K. D. Rode, G. M.
Durner, and J. F. Bromaghin. 2015. Evaluating and ranking threats to the long-term
persistence of polar bears. U.S. Geological Survey, Open-File Report 2014-1254.
http://dx.doi.org/10.3133/0fr20141254. Anchorage, Alaska. 114 pp.
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KNOWLEDGE ELICITATION — EXPERT PANELS

Real-world example: Polar Bear Science Team (7 members)
needed clear direction on resolving differences of opinions
consensus or competing models?

“round-robin” reviews and edits of CPTs

no. of interactions as a function of size of the team -
factorial calculations

httpifiw

In general, however, note that as the size of an expert panel or modeling team increases,
the number of potential interactions (and “camps” and debates) has the potential to
balloon enormously ...
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KNOWLEDGE ELICITATION — EXPERT PANELS

Real-world example: Polar Bear Science Team (7 members)
needed clear direction on resolving differences of opinions
consensus or competing models?

“round-robin” reviews and edits of CPTs
no. of interactions as a function of size of the team -
factorial calculations
250 }‘_\
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... as depicted with this simple factorial calculation. So it’s critical to be very clear at the
onset on team objectives and methods. Also, | have strived to keep such teams or panels
to about 5 members, beyond which the debates and differences can quickly grow out of
hand, UNLESS one asserts a strict structure for querying members, for panel discussions,
and for closing discussions.

In fact, in some Bayesian network applications in management, | have co-led
panels up to 10 members strong with great success, by clearly structuring
discussions and meeting agendas.

Source: Marcot, B. G., P. A. Hohenlohe, S. Morey, R. Holmes, R. Molina, M.
Turley, M. Huff, and J. Laurence. 2006. Characterizing species at risk Il: using
Bayesian belief networks as decision support tools to determine species
conservation categories under the Northwest Forest Plan. Ecology and Society
11(2):12. [online] URL: http://www.ecologyandsociety.org/vol11/iss2/art12/.
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Boolean Logic

For some expert-based models, | have used Boolean logic as the basis for the conditional
probability tables.
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[ Boolean or & and N [olfew==e

A B
True  50.0 i True  50.0
False 50.0 False 50.0

.

A § A 4

c F

True 75.0 True 25.0

False 25.0 False 75.0
Boolean OR Boolean AND

You can easily represent Boolean “or” and “and” functions in conditional probability tables
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A B |
True True True ~
Tue False | True
False True True
False False _False -

A B F ]
True True True
Tue False |  False
False True False
False False _Fa\se -

[ Booleen or &tand @]
True True
False False =
A, A,
Cc 7
True  75.0 jmme True 25.0 fmm | |
False  25.0 False 75.0
(' Boolean OR )} { Boolean AND )
A C Table (in Bayes net Boolean_or__and) = [@ (52 | [ & F Table (in Bayes net Boolean_or__and) EEs
Node: € - A Node: F v Apply | [ OK
veterministicw | Function  v|  [Reset oeterministicw | functon v | [Reset| [Close

... as shown here with simple, deterministic CPTs.
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[ Boolean or & and N [olfew==e

True 100 |— True 100 {—
False OEE N False ol ET L

True

True s
False O [N

False

Boolean OR Boolean AND

This simple model would then work as shown here and in the subsequent several slides.
When A is true and B is true, then A or B is true, and A and B is true.
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True 100 |— True
False 0[B! False

True =" True
False 0NN False

Boolean OR Boolean AND

[® Boolean or & and [=2[IcE =)

.

When A is true and B is false, then A or B is true, and A and B is false.
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[ Boolean or& and N =)=

B |

True 100 m—

False 0 | L
A 4
F

True e True o [N

False 0NN False ——

Boolean OR Boolean AND

When A is false and B is true, then A or B is true, and A and B is false.
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[® Boolean or & and

True
False

A
True 0
False 100
True
False

Boolean OR

i

True
False

Boolean AND

.

And when A is false and B is false, then A or B is false, and A and B is false.
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real-world example ...

Here’s a real-world example of a complex Bayesian network model | developed that is
essentially entirely based on deterministic conditional probability tables
representing Bayesian “or” and “and” functions.
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“Annual Species Reviews” —
Northwest Forest Plan

Credit: Bruce G. Marcot

The project pertained to holding 10-person expert panels in “Annual Species Reviews” to
determine the appropriate management category for each of dozens of plant or animal
species ...
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NORTHWEST FOREST PLAN

o Guidelines for managing late-
successional and old-growth
forest-related species within the
range of the Northern Spotted
Owl

... under the “Northwest Forest Plan,” a multi-agency forest management and conservation
plan covering western Washington, western Oregon, and northwestern California, in the
United States. The Northwest Forest Plan was established to conserve the Northern
Spotted Owl, salmonid fishes, and the full array of species associated with old-growth

conifer forests of the region.

41

NORTHWEST FOREST PLAN

» Annual Species Review: expert panels
to determine species conservation

status

&
3

Part of the regulations under the plan entailed holding “Annual Species Reviews” by a panel
of 5 biologists and 5 managers (10 total) to advise the decision-makers on the most
appropriate conservation and management status of each species.
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The criteria by which the panel was held and evaluated the status of each species were
provided in (complex) details in a published regulation.
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DECISION CRITERIA

Geographic range

Old growth association

Plan provides for persistence
Data sufficiency for management
Survey practicality

I o

Species rarity

The criteria for evaluating each species’ status fell under 6 main headings shown here.
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Survey and Manage Categories

S . 9 " ~ o 5. ticality of
Redefine Categories Based on Species Characteristics | o ye By T ‘
practical 0.0 ‘ |
Relative Rarity Pre-Disturbance Surveys Pre-Disturbance Surveys Status Undetermined ot practical of not needed 50,0
Practical Not Practical _ _ 4. data sufficiency
— - —— 2
Rare Category A - 57 specie Category B - 222 species Category E - 22 species e 50.0 SLERL B
« Manage All Known Sites « Manage All Known Sites Manage All Known Sites _ .I

« Pre-Disturbance Surveys

3. plan provides for persistence
« Strategic Surveys « Strategic Surveys | AP P |
Uncommon Category C - 10 species Category D - 14 species’ Category F - 21 species

* Mang ligh-Priority Sites | » Manage High-Priority Sites | « N/A

« Pre-Disturbance Surveys «N/A «N/A

S&M species category
« Strategic Surveys « Strategic Surveys « Strategic Surveys ?eﬁ“z"o'}f:y 283'35'0" Steps 23 A
for Annual Species Review
Decision Modeling Team
- modelers: Bruce Marcot,
Randy Molina, Steven Morey,
Mark Huff, John Laurence,

Determining the conservation category Russ Homes - 10
for a species ... depends on decision
criteria in the Record of Decision

! Includes three species for which pre-disturbance surveys are not necessary

The outcome would be for the panel to recommend which of 7 categories each species
should be placed into — the 7 being the Categories A through F shown above, plus one for
potentially removing the species entirely from the list. Each category depending on the
species’ relative rarity among many other of the 6 criteria in the preceding slide, and each
category carried different implications for follow-up site management and for the extent
and type of surveys for the species.

The main Bayesian network model looked like this.
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5. of survey ]

practical

0
not practical or notneeded 100

4. data sufficiency
sufficient 50.0
§-species ra insufficient  50.0 a
rare 100
uncommon 0 3. plan provides for persistence
y3s 0
no 100
2.LS0G iated?
S&M species category ves :S;O_CI
Overall ASR Decision, Steps 2-3 A 0 _
vers. 27 Jun 2002 8 50.0 pu—
for Annual Species Review C 0
Decision Modeling Team D 0
- modelers: Bruce Marcot, E 50.0 hi
Randy Molina, Steven Morey, F 0 in
Mark Huff, John Laurence, off 0 out of : |

Paul Hohenlohe

Here’s an example of one species for which the Criteria 1, 2, 3, 5, and 6 were judged by the
panel, with criterion 4 unknown so in the model that node was left to its default prior
probability distribution of complete uncertainty (uniform probability distribution).
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5. of survey

ractical 0
not practical or notneeded 100

4. data sufficiency

sufficient 500
6. species rarity insufficient  50.0

rare 100
uncommon 0 3. plan provides for persistence
y2s 0
no 100
2.LS0G associated?
S&M species category ves 100
Overall ASR Decision, Steps 2-3 A no 0
vers. 27 Jun 2002 8 O j—
for Annual Species Review C 0
Decision Modeling Team D 0
- modelers: Bruce Marcot, E 50.0 jmm— 1. geographic range
Randy Molina, Steven Morey, F 0 in
Mark Huff, John Laurence, U 0 > out 0
Paul Hohenlohe e —

The outcome in this example here was that this particular species might fit under Category
BorE.
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Survey and Manage Categories

Redefine Categories Based on Species Characteristics

Relative Rarity | Pre-Disturbance Surveys | Pre-Disturbance Surveys | Status Undetermined
Practical Not Practical
N - N 5. of survey
Rare Category A - 57 sp: Category E
+ Manage All Known § + Manage All Known Site: precical 0
anage All Known Sit anage All Known Sites > il 0o
« Pre-Disturbance Surv “NA
+ Strategic Surveys . .\lr.ﬂcng

4. data sufficiency
Uncommon Category C - 10 species Category D - 14 species Category F - 21 species sufficient  50.0

e High-Priority Sites | + Manage High-Priority Sites | + N/A S: “°°I°1soom ty insufficient _50.0
Disturbance Surveys | + N/A “NA e

* Pre

* Strategic Survey: « Strategic Surveys « Strategic Surveys stence (LIENTET 0 3. plan provides for persistence
y3s 0
"Includes three species for which pre-disturbance surveys are not necessary L2 100
2.LS0G associated? 2.LS0G associated?
S&M species category ves 100 S&M species category ves 100
Overall ASR Decision, Steps 2-3 A no 0 Overall ASR Decision, Steps 2-3 A no 0
vers. 27 Jun 2002 B 0 j— vers. 27 Jun 2002 B O —
for Annual Species Review C 0 for Annual Species Review C 0
Decision Modeling Team D 0 Decision Modeling Team D 0
- modelers: Bruce Marcot, E 50.0 jmmm— 1. geographic range - modelers: Bruce Marcot, E 50.0 jmm— 1. geographic range
Randy Molina, Steven Morey, 5 0 in 100 Randy Molina, Steven Morey, F 0 in
Mark Huff, John Laurence, Nt 0 > out 0 Mark Huff, John Laurence, U 0 > out 0
Paul Hohenlohe e — Paul Hohenlohe ~S ————

Again, this model was built with deterministic Boolean logic-based conditional probabi
tables ...
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conditional probability table

| AOF Table (in net overall_framework_b_steps_2_3_) J [=] B3

Node: [F -

DS 5. of survey ]
practical 0

6. species rarity 5. practicality of sur... 2. LSOG associated? 3. plan provides for... 1. geographic range 4. data sufficiency S&M species categ... not practical or notneeded 100
rare practical Yyes Yyes in “sufficient off =
racical D Ve n it o
rare practical yes yes out suffcient off sufficient  50.0
rare practical yes no in sufficient A |
rare practical yes no in insufficient 3 uncommon ol i 1] 3. plan provides for persistence
rare practical yes no out sufficient off 35 0
rare practical yes no out insufficient off o
rare practical no yes in sufiicient off
rare practical no yes in insufficient off
rare practical no yes out sufficient off
rare practical no yes out insufficient off S&M species category
rare practical no no in sufficient off Overall ASR Decision, Steps 2-3 A
rare practical no no in insufficient off vers. 27 Jun 2002 B 0 —
rare practical no no out sufficient off for Annual Species Review c 0
rare practical no no out insufficient off ! Decision Modeling Team D 0
1 T — | = - modelers: Bruce Marcot, E 50.0 jmm—

Randy Molna, Steven Morey, ™ 4 ] T00 Randy Molina, Steven Morey, F 0

Mark Huff, John Laurence, ft 0 out 0 Mark Huff, John Laurence, off 0

Paul Hohenlohe Paul Hohenlohe

... such as shown here, in part, for that final output node. Now, each input node was actually the result of a submodel representing the published

guidelines. For example, category 1 “geographic range” ...
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[® 1 geog renge - v2020513.dne

25.0
750

Geographic Range
vers. 19 Apr 2002

for Annual Species Review P Y e 8
Decision Modeling Team Category 1 geographic range

- modelers: Bruce Marcot in 625 --;'
Randy Molina, Steven Morey, Q 5 |
Mark Huff, John Laurence, e ———

Paul Hohenlohe

oeEs
I 5
2.sp close to NFP area? | 73 syitable habitat wiin NFP area? |
ves 50.0 et |
no 50.0

... is actually the result of its submodel. Here, nodes 1, 2, and 3 at the top are the three
criteria explicitly listed in the published regulation guidelines for this particular category, by
which to determine if a species is within or out of the range of the Northwest Forest Plan.
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A G Table (in Bayes net N_geog_range 5 13 02)

513 ¢ =8 Ho8 =X
B 2909 . B
Node: G - [Apply | [ oK | =
Deterministicw | Function v [Reset| [Close| [fea?
1. taxon range within NFP area? (2.3) sp. is close & suit hab wiin ... | Category 1 geographic range |
(1] [w in -

in
in out in
g [out

in

Geographic Range

vers. 19 Apr 2002

for Annual Species Review
Decision Modeling Team

- modelers: Bruce Marcot,
Randy Molina, Steven Morey,
Mark Huff, John Laurence,
Paul Hohenlohe

— 4 =
‘ Category 1 geographic range

62.5 m—
N St
— il
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of survey

practical

D e ——
rare J—

100
{.uncommon of /]
~—_——<

Overall ASR Decision, Steps 2-3
vers. 27 Jun 2002
for Annual Species Review
Decision Modeling Team
- modelers: Bruce Marcot,
Randy Molina, Steven Morey,
Mark Huff, John Laurence,
Paul Hohenlohe

not practical or not needed

0
100

4. data sufficiency

50.0
500

sufficient
insufficient

S&M species category
A

B 0 j—

C 0

D 0

E 50.0 p—

F 0

off 0

3. plan provides for persistence
y3s 0 _
no 100

2.LS0G associated?
yes 100
no of |

1. geographic range

100
out af ;|

Some of the categories were very complicated, such as the one for ascertaining species

rarity ...
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W60 peces oty - e GO0 e

Spacies Relative Rarity - Rare

=3 on = |
2l el A
o . 13. hab frag - g.nfxolcnlsomllon ‘not poorly distributed 50,0 :gl
Decision Modeling Team 50, ] 2.0 poorly distributed 50.0

Steve Morey. Randy Moina
fandom grid-based analyses
= curently used
* potentially useful

14. Availability of microsite habitat.
o limited

{13) overall distribution

N
inadequate __ 875 jmm

500
50.0

[11_ ecological amplitude_|

5. roprod chars > limit popn growth rates.

yes 500 I.
ES

7. no. individuals per site “(GOBIG)
gl 50.0 l Tow to high 500

EH (e SO

[_o. populationwond__| _

e _“ . no_ ikl extant sites on fed lands

declining not low 50,0
_ug.\ 50.0 jmt

... which entailed specifying some 15 different factors according to the regulation

guidelines. Here is the submodel for species rarity, using deterministic Boolean logic-based
conditional probability tables throughout.
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DECISION MODELING

o Ensures consistency among the Annual Species
Review panelists

o Identifies inconsistencies in the guidelines
o Used to evaluate 100s of species

So this Bayesian network model was very helpful in guiding the Annual Species
Review panels —who met annually for a number of years running — to navigate
through the complex web of regulation guidelines. Use of the model ensured
consistency among the panelists, and helped identify some key (but inadvertent)
inconsistencies hiding in the regulation guidelines and to deal with them in a clear,
open manner. The Annual Species Review panels used the model to evaluate

hundreds of species, appropriately as a decision-aiding, not a decision-making, tool.

Source: Marcot, B. G., P. A. Hohenlohe, S. Morey, R. Holmes, R. Molina, M.
Turley, M. Huff, and J. Laurence. 2006. Characterizing species at risk Il: using
Bayesian belief networks as decision support tools to determine species
conservation categories under the Northwest Forest Plan. Ecology and Society
11(2):12. [online] URL: http://www.ecologyandsociety.org/vol11/iss2/art12/.
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CONTROL

OK, let’s move on to our second major consideration in Bayesian network modeling in
management ...
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CONFIDENCE — HOW TO DENOTE
CONFIDENCE IN EXPERT JUDGMENT USED
TO DEVELOP PROBABILITY STRUCTURES?

CONTROL — HOW TO IDENTIFY
MANAGEMENT CONTROL AND INFLUENCE
OF DECISIONS?

CAUSE — HOW TO DETERMINE
CAUSALITY?

... the issue of control.
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“There's no time for thinking. We have
to make a management decision.”
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KEY QUESTIONS ABOUT CONTROL

How do you know what management can control?

What are realistic expectations for the degree of
management control?

Goes to the heart of inferring causality.

Here are some key questions about management control.
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0to 100
>=100

0to 50
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80 to 100
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A. p. stumps pres., cm dbh inadequate 21.6pm | |

0 228 i1 l i
3:’1:)%0 ;;Z; - B. nob. Presence
10470 i present  69.0 -

absent  31.0
0.38 +0.92

Bridgeoporus nobilissimus
vers. gamma 1.00a
- species experts: Tom O'Dell, Tina Dreisbach
- expert peer review by Noel Bacheller, Alice Smith
- reconciled: 13 June 2000
deler: Bruce Marcot

Photo Credits: Bruce G. Marcot

This is a model | built, with mycologist expert input, that predicts habitat suitability and
presence of a rare bracket fungus.
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| Bri nobilissimus gamma 1_00a

T R Presence of other bole conks Mesic indicator plants

; sparse 33
Otoi00 333jmm | | | Liretoabeent 500 ol
>=100 333 N

A. p. snags pres., cm dbh [ Local mesic habitat__ |
0 333 | adequate 65.8 T

Oto 100 333 inadequate  34.2
>=100 333

Abies procera substrate
adequate 67,2 !
inadequate  32.8 |

B. nob. Presence
present 539 .
absent  46.1

00774 £1

Bridgeoporus nobilissimus
vers. gamma 1.00a
- species experts: Tom ODell, Tina Dreisbach
- expert peer review by Noel Bacheller, Alice Smith
- reconciled: 13 June 2000 g
- modeler: Bruce Marcot

running the
model

3

Ploto Credits: Bruce G. Marcot

The model is run by specifying values of the input environmental conditions.
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;: Alp-holes ';';2" cm dbh 1o 50 T abundant 333
0t 100 33 rare to absent 50.0 i ZE:’;‘E‘
>= 100 33 N\

K'Y o

Y: A. p. snags pres., cm dbir] [ B1: Local mesic habitat_| [ J2: Vegetative cover, %
0 33 adequate 658 | 0to50 k] — B
0to 100 333 inadequate 50t080 333
>=O1DIII 333 S 8010100 333

adequate
inadequate

A: B. nob. Presence

present 539

TITLE1: Bridgeoporus nobilicsimuc
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- expert peer review by Nc Belief Variance = 0.0003982 (0.16 %)
- 13 June 200!
- modeler: Bruce Marcot
Sensitivity of 'A' due to a finding at another node:
[P Node Variance  Mutual Variance of
sensitivity |- Reduction Info Belicts
12 0.09414 0.06940 0.0235355
A z 0.07956 0.05963 0.0198891
anaIySIS ¥ 0.0789 0.05914 0.0197242
B 0.01456 0.01059 0.0036399
X 0.01196 0.00874 0.0029912
c 0.001593 0.00115 0.0003982
l J
< | ]

So what about management “control?” What can this model tell us about what parts of
forest structures are more important for this species? One answer lies in conducting
sensitivity analysis of the model ...
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0.01456 0.01059 0.0036399
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c 0.001593 0.00115 0.0003982
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... that has identified that vegetative cover, and large-diameter stumps and snags (standing
dead trees) of noble fir, contribute the most to habitat suitability and presence of this rare

bracket fungus species.
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So these three forest stand attributes could the key ones that management might want to
monitor, and possibly to restore to create habitat for the species. They are ones also that
management could control through proper forestry silvicultural prescriptions.
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MANAGEMENT AND CAUSALITY

Causality is central to the management question of
controllability.
What is the cheapest and easiest way to control some
environmental condition for a desired outcome?
Use a Bayesian network to determine effect of
controllability by use of “influence runs.”

* examples

In this example, it is assumed that these forest stand conditions cause the habitat to be
suitable for this bracket fungus species. The question of causality is central to management
controllability. It raises these further questions, as well. And the use of Bayesian network
models to conduct what | term “influence runs.” Let’s look at that for a minute...
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sensitivity analysis
v.
influence runs

| differentiate between “sensitivity analysis” and “influence runs” in Bayesian network

modeling.
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PoLAR BEARS, STRESSORS, AND
CLIMATE CHANGE IN THE ARCTIC

Here’s an example with the polar bear model.
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Polar Bear

This is the polar bear model mentioned previously.

Source: Atwood, T. C., B. G. Marcot, D. C. Douglas, S. C. Amstrup, K. D. Rode, G. M.

Durner, and J. F. Bromaghin. 2015. Evaluating and ranking threats to the long-term
persistence of polar bears. U.S. Geological Survey, Open-File Report 2014-1254.
http://dx.doi.org/10.3133/0fr20141254. Anchorage, Alaska. 114 pp.
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Polar Bear

B cutcome model Phace 11009850
Pl Bear Stessor lodel Prase
vers 5 Sep 2014 (v 1408053)

Reltv. Influence on Popn Trend

increased 19.1 m
same as recent 22.8 mm
decreased 28.6

ecreased  29.6 i

Phase § odeing Team
Steve Amstng P51
Todd Aewood USGS

Brceliarcc USFS.
Karyn Rode USGS

The final output node here depicts the relative influence of climate change on Arctic sea
ice, and of other environmental and anthropogenic stressors, on polar bear population
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§

Archipelago Ecoregion

Seasonal Ice Ecoregion

Probability of Outcome

19851995 [ — ]
19851995 [ 1

2007-2012

25 ey
4 85 Forcing (rcp)

75,
4585 ;25095 Decade
5 85 Forclw(kcp"

Bayesian Network Model Outcome
Larger O Same O Decreased @ Greatly decreased

Running the model for each of four Arctic ecoregions, under two climate change

scenarios and 6 time period, resulted in probability projections for polar bear
population trends, as shown here.
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Polar Bear

B cutcome model Phace 11009850
Pl Bear Stessor lodel Prase
vers 5 Sep 2014 (v 1408053)

sensitivity
analysis

Phase § adeing Team
Steve Amstng P51

RodeUscs

Erp—

Now, “sensitivity analysis” is run first by setting all inputs (the yellow nodes) to their default
prior probability distributions.
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B cutcome model Phace 1100850
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i 0.00001 0.000537 0.0000007
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Human Provision 0.00000 0.00015 0.0000003
ZEL BRI SRS v
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e

i cnsions rprscion e GO, cseson)

The result of such a sensitivity analysis is essentially a statement about the underlying

probability structure of the model ...
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B cutcome model Phace 11009850

Pl Bear Stessor liodel P
vers 5 Sep 2014 (v 1408053)
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... here depicted more clearly in a bar graph. In this case, it seems that most of the model
sensitivity pertains to variables related to climate, sea ice, and their effects on key prey
species of the polar bear.
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Polar Bear

B cutcome model Phace 1100850
Poiar Bear Stessor llodel Prased
vers 5 Sep 2014 (v 1406053)

influence
analysis

Phase § odeing Team
Steve Amstng P51

Brcelarc USFS.
Karyn Rode USGS

In comparison, what | term an “influence analysis” pertains to determining the influence of
one or more inputs on model outcome run under a specified scenario, not under default
prior probabilities of the input nodes ...
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Polar Bear

Pl Bear Stessor lodel Prase
5 5 Sep 2014 1 1406053)

influence
analysis —

Kanyn Rode USGS

... and by this manner, influence runs can determine the degree to which varying a given
input factor can affect the overall outcome. This is then related to the degree of
management control on that outcome.
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Polar Bear

Poiar Bear Stessor llodel Prase
Sep2014 (v 1408053)
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Karyn Rode USGS

In the polar bear model, sets of inputs were each varied to determine the degree to which
each set could help improve (or, contrariwise, further degrade) polar bear futures.
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Archipelago Ecoregion, RCP 4.5
1.0 T T T T
>
=
©
o o8 -
(=]
n
S osf -
o
o Influence Scenario
g o04f IR7G slackest mgt
m~ : g
=T < IR7H strictest mgt
© — :
S S0zl _| + Normative
3
oo
0.0 1 1 1 1
& &8
& & & Cid
.1 3 & * &
.y & W& A %
] W Time Period

| plotted the results of such influence runs this way. The “normative” or expected
outcomes under future scenarios is shown here in green, and the other lines depict results
when specific sets of inputs (that theoretically could be controlled by management) were
set to their worst or best conditions.
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For example, with all else being held to “normative” (expected) future conditions for this
ecoregion under this climate change scenario, if marine prey of the polar bear (including
marine seals) were to achieve best possible states (the red line), then the probability of
future polar bear populations being greatly declined could be lessened by as much as about
10 percent by the end of the century; this could be a significant conservation outcome. If,
however, marine prey were to crash, then the probability of polar bears being greatly
declined would increase by 10 percent or more. This shows the influence of this factor
(marine prey) on polar bear outcomes.
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Conducting similar influence runs for the future of Arctic sea ice shows the most extreme

influence outcome.
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I summarized all influence runs this way, in a form of “tornado diagram” as it’s called in the
literature. This plot rank-orders the degree of influence — bad on the left (with the bars
going up), good on the right (with the bars going down) — to clearly show their relative
differences. It’s clear from this plot that sea ice and marine prey can have the greatest
influence on future polar bear populations. Other factors could contribute as well, but not
nearly as much. So this provide management with some clear expectations of outcomes
should they choose to control certain aspects of the polar bear’s environment.
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LOSS OF

CONTROL
Threat
CONTROL RECOVERY

MEASURES MEASURES

POTENTIAL POTENTIAL
CAUSES OUTCOME

In environmental engineering, such influence results are depicted in a “bow-tie digram” as
generalize here.
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STRUCTURED DECISION-MAKING
TO EVALUATE SPECIES AT RISK

General format of risk analysis depictions of BN model results

Outcome |

Same as
Larger  [now Smaller _|Rare Extinct

Almost
0.80-1.00 |certain

0.60-0.79 | Likely
Coin
0.40-0.59 [toss

Probability

I

0.20-0.39 | Unlikely

0.00-0.19 |Rare

KEY: d = GCM minimum
M = moderate risk m = Ensemble mean
H = high risk u = GCM maximum

The results of influence runs and scenario modeling in Bayesian networks can be then
put into a decision risk-management framework shown here. “Risk” is essentially

the probability of an outcome coupled with the condition or utility of that outcome.

For example, here, extreme risk results from very high probability of a species such
as the polar bear becoming rare or extinct.
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| | @ CAUSE
I

Now let’s address the third of the modeling considerations here: cause.
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CONFIDENCE — HOW TO DENOTE
CONFIDENCE IN EXPERT JUDGMENT USED
TO DEVELOP PROBABILITY STRUCTURES?

CONTROL — HOW TO IDENTIFY
MANAGEMENT CONTROL AND INFLUENCE
OF DECISIONS?

CAUSE — HOW TO DETERMINE
CAUSALITY?

Let’s ponder how Bayesian network models aid in determining causality.
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caffeine causality loop

need coffee
to wake up
Y, (]

3\8& > ‘ -

{ -

H = too much

B = S coffee,
- VY can'tsleep

not enough .
sleep, can't <|___/
wake up

First, here is the causal loop in which | find myself often stuck ... but this aside ...
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KEY POINTS ABOUT CAUSALITY

No model - SEM, path regression, probability networks,
Bayesian networks - can reveal causality.

... it is a truism that no model can reveal causality.
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KEY POINTS ABOUT CAUSALITY

Causal mechanisms can be insidiously complex:
Environmental condition - Species response, ? =residuals

Causal mechanisms can be unexpectedly complicated. For instance, consider that we want
to understand how some environmental condition “E” affects some species outcome “S.”
There will always be some unexplained variation “?” in this simple depiction.
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KEY POINTS ABOUT CAUSALITY

Causal mechanisms can be insidiously complex:
Environmental condition - Species response, ? =residuals

(a) 2

In a more realistic depiction, the true causal environmental variable E2 could be hidden
from our research but could be correlated with the variable we do observe, E1.
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KEY POINTS ABOUT CAUSALITY

Causal mechanisms can be insidiously complex:
Environmental condition - Species response, ? =residuals

(@) 2

Even more complicated could be another species S2 that somehow affects our target
observed species S1, such as by S2 being a key predator on S1, or some other ecological
relationship.

91

KEY POINTS ABOUT CAUSALITY

Causal mechanisms can be insidiously complex:
Environmental condition - Species response, ? =residuals

(a) 2

N

It can get complicated quickly in real-world ecological communities consisting of many
environmental factors and many species. Also, notice how we are starting to see a
repeating pattern in this expanded causal web.
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Key Ecological
Functions of
Organisms

. R .
; L S

Here’s a real-world example ... what | call “key ecological functions” of wildlife organisms.

Key ecological functions refer to the active ecological “roles” that organisms play in their
ecological communities.
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In this example is the beaver (among other species), who fells trees to dam streams that
alters characteristics of the water and that creates pond habitats used by a wide variety of

other species, here shown as salmon.




D) ket bk rample 0 saimon -3 0 eta 8 -

An Example of Linking
Wildlife Functions to
Fish Habitats

American Beaver
Highpopn  8.00
Lowpopn 330
Absent 590

iation Flow - Diel Variation

igh %9 = T Channel minimum width T
T g 21 high
mowae soofmmm | [n2 ., ZIECEN e T
low TEL low =ul narrow 27 ]|
TiT2063 OSTEET? 15209
% =
R \ P s A
- ]

‘great habitat
poor habitat
2ich

Photo Credits: Dennis Garrison, Gunnison National Forest; Bruce G. Marcot; US Fish and Wildlife Service

In this model, different management alternatives or strategies (in the blue box) can have
different affects on habitat elements in turn affecting presence of beavers and other dam-
creating species (e.g., nutria) ... ultimately affecting salmon population response. The point
here is that causality in this system is not a direct link from the management activity (or its
initial affect on habitats) to salmon response, but instead travels through other species,
their key ecological functions, and system responses.
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KEY POINTS ABOUT CAUSALITY

o Causal mechanisms can be insidiously complex:
+ Environmental condition - Species response, ? =residuals

There seems to be a self-similarity of patterns ...
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KEY POINTS ABOUT CAUSALITY

Causal mechanisms can be insidiously complex:
Environmental condition - Species response, ? =residuals

... the deeper you probe into ecological systems ...
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KEY POINTS ABOUT CAUSALITY

Causal mechanisms can be insidiously complex:
Environmental condition - Species response, ? =residuals

B s \ | [aa]
 self-similarity of interaction patterns
» feedback loops — positive reinforcing,
negative dampening

X,
[ [é%(

... patterns of which result from various kinds of feedback loops and causal connections and
influences ...
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KEY POINTS ABOUT CAUSALITY

Causal mechanisms can be insidiously complex:
Environmental condition - Species response, ? =residuals

causality
1s fractal

R
i,

)

... which had led me to postulate that causality is fractal ...
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KEY POINTS ABOUT CAUSALITY

Causal mechanisms can be insidiously complex:
Environmental condition - Species response, ? =residuals

@

causality

1s fractal
D vy 1] Mile—
* patterns recur at progressively smaller
scales, describing partly random or
chaotic phenomena
¢ self-similar across different scales,
repeating in feedback loops

LI T

... in that such patterns recur at various scale and appear more or less self-similar.
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KEY POINTS ABOUT CAUSALITY

Causal mechanisms can be insidiously complex:
Environmental condition - Species response, ? =residuals

causality
1s fractal

Hox
" EL j s2 ﬁ,)

* hierarchical Bayesian models
* nested probability networks

* time- or space-replicated nets
=] >

Such fractal patterns could be modeled various ways in Bayesian networks.
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KEY POINTS ABOUT CAUSALITY
Causal mechanisms can be insidiously complex:
Environmental condition - Species response, ? =residuals

@

causality
1s fractal

el

* how far do we need to zoom in,

for achieving a stated objective?
=] (=)

\
B 0=

One key question is, to achieve a stated objective, particularly for management control,
how much detail is needed in this self-similar, nested causal web structure? How far do we
need to zoom in?
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Bayesian Networks

» Acyclic
e Directed
 Markovian

Remember that Bayesian networks are acyclic digraphs ... that are essentially
Markovian in structure, that is, each node depends only its immediate parent
nodes.
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Bayesian Networks

* Acyclic
e Directed
 Markovian

Houw to represent non-
Markovian processes?

So one question is, how to represent non-Markovian processes in a Bayesian network
model? These could be important for depicting the complexity of causal influences
that could be latent (hidden) or could be operating across time steps, geographic
scales, or nested functions such as shown in the beaver example.
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Ecosystem State and
Transition Modeling —
Non-Markovian

Credit: Bruce G. Marcot

Here’s a simple “cheat” | developed for depicting non-Markovian processes in a Bayes net
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‘one way to model change in
successional stage or
vegetation communities

- suggested by Bruce Marcot

[

The project at hand was to project future successional states of a vegetation community
based on transition probabilities across time periods from the present (t0) into the future
(t1, t2, t3). In this model, the transitions occur independently and successively across the
time periods in a classic Markovian structure where conditions in each time period is
influenced ONLY by conditions in the immediately preceding time period.
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one way to model change in
successional stage or
vegetation communities

- suggested by Bruce Marcot

- suggested by Bruce Marcot

For instance, in the present time period t0, let’s say that the vegetation community is 100%

So to “cheat” the Markovian process, one can link successive future time periods to all the
in successional state A. This model projects its transitions into future states as shown here.

previous time periods.
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Well, consider if we introduce some stressor such as climate effect ...

In this way, future vegetation conditions can be influences by conditions in the immediately
recent time period AND by those in previous periods as well. Why is this useful?
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t

SuccstateA 750
SuccstateB 250
Succ state C 0

Climate effect

oS

Succstate A 338 ’
Succstate B 540
SuccstateC 1220l | |

4 L

s

©2

SuccstateC 2

Succstate A 67.5 i I
Succstate B 30.0 jum |
50 |IRRIRN

one way to model change in
successional stage or
vegetation communities

- suggested by Bruce Marcot

... that can change the course of vegetation succession at a particular future time period.
Its influence might play out more strongly over time in such a (pseudo) “non-Markovian”

structure as this one.
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suce change 3dne
nge

0

Succ
Succ
Succ

StaleA 333 s
State B 333 I
State C 333 | |

SuccstateA 283
SuccstateB 350
SuccstateC 367

2l

oS

3

SuccstateA 127 l

Succstate B 315

SuccstateC 558 |
Ed

© / E

SuccstatleA 255 T
Succstate 8 34.3 jmum |
SuccstateC 402 |

Climate effect

Fire effect

high

none 333
moderate 333
333

none 333
moderate 333
high 333 ]

one way to model change in
successional stage or
vegetation communities

- suggested by Bruce Marcot

One can also introduce other stressors that could have different and additional influences,

as well.
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[ suce change 3.dne Eoes)

[
SuccstateA 100
SuccstateB 0 [
Succstate C 0 SuccstateA 113m] | |
SuccstateB 720 |
SuccstateC  168jmi | |
b

t
SuccstateA 750 [
SuccstateB  25.0 ’ | Succstate A 225 |
SuccstateC o[} | | SuccstateB 750

/ »\ SuccstateC 250 | | |

Climate effect Fire effect | ‘one way to model change in

successional stage or
noee oM | vegelation commnities
high 100 high 100

- suggested by Bruce Marcot

So, although this Bayesian network really is still Markovian (each node is influence
only by its directly-linked parents), it is functional non-Markovian in terms of the
influence of time periods.

113

Probability
VS.

Likelihood

I want to briefly note the difference between probability and likelihood in a Bayesian
network context, as this has implications for thinking about causality.
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probability —
what are the possible
| QO Table (in et Malone_Jumping_sug_alpha_0_30) ¥ o/
outcomes,
Node: E v ( ) Node: E v s < SS
given prior conditions
Chance v Chance v
Tree/tall shrub canopy closure (%) Vegetation zone  Low shrub canopy closure (%) suitable  unsuitable ] Tree/tall shrub canopy closure (%) Vegetation zone  Low shrub canopy closure (%) suitable  unsuitable |
80 to 100 Westem Hemlock 40 to 100 100.00 0.000 1= 80 to 100 ‘Western Hemlock 40 10 100 100.00 0.000 1=
80 to 100 Westemn Hemlock 201040 80.000 20.000 8010100 \Westem Hemlock 01040 50,000 0,000,
8010 100 Westem Hemlock 01020 .00 30.000 (Jsoto 100 ‘Westem Hemlock  0t0 20 .00  30.000 )
80 to 100 Siver fir Mtn hemlock 40 to 100 100.00 0.000 B0 1o 100 Tver Tir Wtn hemlock 40 10 100 100. 00 0. 000
80 to 100 Silver fir Mtn hemlock 20 to 40 90.000 10.000 80 to 100 Silver fir Mtn hemlock 20 to 40 90.000 10.000
80 to 100 Siiver fir Mtn hemlock 0 to 20 80.000 20.000 80 to 100 Silver fir Mtn hemlock 0 to 20 80.000 20.000
60 to 80 Westen Hemlock 40 to 100 100.00 0.000 60 to 80 ‘Western Hemlock 40 to 100 100.00 0.000
60 to 80 Westem Hemlock 201040 70.000 30.000 60 to 80 ‘Western Hemlock 201040 70.000 30.000
60 to 80 Westemn Hemlock 0to20 50.000 50.000 60 to 80 ‘Western Hemlock Oto20 50.000 50.000
60 to 80 Silver fir Mtn hemlock 40 to 100 100.00 0.000 60 to 80 Silver fir Mtn hemlock 40 to 100 100.00 0.000
60 to 80 Siver fir Mtn hemlock 20 to 40 80.000 20.000 60 to 80 Silver fir Mtn hemlock 20 to 40 80.000 20.000
60 to 80 Silver fir Mtn hemlock 0 to 20 60.000 40.000 60 to 80 Sitver fir Mtn hemlock 0 to 20 60.000 40.000
01060 Westem Hemlock 40 to 100 40.000 60.000 0to60 ‘Western Hemlock 40 to 100 40.000 60.000
0to60 Westemn Hemlock 201040 20.000 80.000 OtoB0 ‘Western Hemlock 201040 20.000 80.000
01060 Westem Hemlock 0to20 0.000 100.00 01060 ‘Western Hemlock 0to20 0.000 100.00
0to60 Siiver fir Mtn hemlock 40 to 100 50.000 50.000 0to60 Silver fir Mtn hemlock 40 to 100 50.000 50.000
01060 Silver fir Mtn hemlock 20 to 40 30.000 70.000 01060 Silver fir Mtn hemlock 20 to 40 30.000 70.000
01060 Siiver fir Mtn hemlock 0 to 20 0.000 100.00 01060 Silver fir Mtn hemlock 0 to 20 0.000 100.00
a 3 —11 g w a 3 —11 Yl
As we know, a conditional probability table (CPT) in a Bayesian network model The highlighted row here says that when tree or tall shrub canopy closure is 80 to 100 %,

and the vegetation zone is Western Hemlock, and the low shrub canopy closure is 0 to 20
%, then the site has a 70 % probability of being “suitable” (for some species) and 30% being
“unsuitable.” Each row in a CPT therefore is a statement of probability — that is, what are
the possible outcome states (suitable, unsuitable) given some set of prior conditions.

essentially lists all possible conditions of the parent node(s), shown on the left, and
the outcome state probabilities of the child node, show on the right. Here’s an
example CPT from some model | built.
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likelihood -
what are the possible
. b 5l
prior conditions, : ,
Node: E -
] given an outcome
Tree/tall shrub canopy closure (%) Vegetation zone Low shrub canopy closure (%) suitable unsuitable ]
B0 10 100 Westem Hemlock 40 10 100 100.00 o.000 4]
80 to 100 ‘Western Hemlock 2010 40 80.000 20.000
80 to 100 ‘Westemn Hemlock 0to20 70.000 30.000
80 to 100 Silver fir Mtn hemlock 40 to 100 100.00 0.000
80 to 100 Silver fir Mtn hemlock 20 to 40 90.000 10.000
80 to 100 Silver fir Mtn hemlock 0 to 20 80.000 20.000
60 to 80 ‘Western Hemlock 40 10 100 100.00 0.000
60 to 80 ‘Westemn Hemlock 201040 70.000 30.000
60 to 80 Westemn Hemlock 0to20 50.000 50.000
60 to 80 Silver fir Mtn hemlock 40 to 100 100.00 0.000
60 to 80 Silver fir Mtn hemlock 20 to 40 80.000 20.000
60 to 80 Silver fir Mtn hemlock 0 to 20 60.000 40.000
0to60 ‘Westemn Hemlock 4010 100 40.000 60.000
0o 60 Westemn Hemlock 201040 20.000 80.000
0to60 ‘Westemn Hemlock Oto20 0.000 100.00
0to60 Silver fir Mtn hemlock 40 to 100 50.000 50.000
0to60 Silver fir Mtn hemlock 20 to 40 30.000 70.000
0to60 Silver fir Mtn hemlock 0 to 20 0.000 100.00
—
i I :l_l Y

Contrast that with a column in the CPT, which represents likelihood — that is, what are the
possible prior conditions that could lead to this specified outcome state?
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likelihood -
prior conditions,

) il
\ given outcome ,
ode: E ~
chance v “ee
Tree/tall shrub canopy closure (* normallzed suitable | unsuitable |
80 to 100 . 5 100.00 0.000 =]
Bt likelihood
8010 100 70.000 | 30.000
8010 100 f 1 100.00 0.000
8010 100 unction 90.000 | 10.000
8010 100 Silver fir Mtn hemiock U 1o 20 80.000 | 20.000
601080 Western Hemlock 40 to 100 100.00 0.000
601080 Westem Hemlock 2010 40 70.000 | 30.000
601080 Westem Hemlock 01020 s0.000 | s0.000
601080 Silver fir Mtn hemlack 40 to 100 100.00 0.000
601080 Silver ir Mtn hemlock 20 to 40 80.000 | 20.000
60080 Siver fir Mtn hemlock 0 to 20 60.000 | 40.000
01060 Westem Hemlock 40 to 100 40.000 | 60.000
01060 Westem Hemlock 2010 40 20.000 | s0.000
01060 Westem Hemlock 01020 0.000 | 100.00
01060 Silver fir Mtn hemlock 40 to 100 s0.000 | so.000
01060 Silver fir Mtn hemlock 20 o 40 30.000 | 70.000
01060 Silver fir Mtn hemlock 0 to 20 0.000 | 100.00
~— -
K1 | L — :l_l i

In fact, if a CPT is parameterized with “pegged” values of 0 and 100, then the column here
can be interpreted as a normalized likelihood function. So again, it is important to
differentiate between probability and likelihood. In the context of causality, probability tells
you potential causal outcomes from some specified prior condition, whereas likelihood
tells you potential causal conditions that could result in some specified outcome.
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CONFIDENCE — HOW TO DENOTE
CONFIDENCE IN EXPERT JUDGMENT USED
TO DEVELOP PROBABILITY STRUCTURES?

CONTROL — HOW TO IDENTIFY
MANAGEMENT CONTROL AND INFLUENCE
OF DECISIONS?

CAUSE — HOW TO DETERMINE
CAUSALITY?

So now we have delved into these three main aspects of Bayesian network modeling —
confidence, control, and cause.
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NEW AREAS OF RESEARCH

I'll finish by suggesting some new areas of research in Bayesian network modeling.
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NEW AREAS OF RESEARCH

Develop theory and tools for fractal Bayesian
networks & a deeper theory of causality
self-similarity
feedback loops ++ and — -

First is the need for a deeper theory and tools for modeling fractal causal structures.
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NEW AREAS OF RESEARCH

Merge Bayesian network modeling with
structured equation modeling (SEM)

Second is the exciting area of more formally and fully merging Bayesian network
modeling with the area of frequentist statistical modeling known as structural
equation modeling or SEM. SEM is often used to depict causal structures, as well.
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NEW AREAS OF RESEARCH NEW AREAS OF RESEARCH

CAUSALITY

ELS, REASONING

Merge Bayesian network modeling with i s
structured equation modeling (SEM) X

— Develop a means of explicitly representing
JUDEA PEARI . g N
confidence in expert-judgment based nets

And just to mention that some groundwork on this area has been provided by Pearl and And the third are of new research could be developing an explicit way to represent
others.

confidence in expert-based Bayesian network models. Remember that CPTs depict

probabilities (or likelihoods) of how conditions affect outcomes, but CPTs do not depict the
degree of confidence in those values.
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CONFIDENCE IN BNs

‘The Journal of Wildife Managemens 76(6):1298-1309; 2012; DO: 10.1002jwing 366

Habitat Relations | 3"

Using Bayesian Networks to Incorporate
Uncertainty in Habitat Suitability
Index Models

GEORGE F. WILHERE,' Wasbingon Department of Fsh and Wildif, Habitat Prgram, 600 Capitl Wy N. Obmpia, WA 95501-1091, USA

Quantifying the uncertainty of a belief net response:
Bayesian error-bars for belief net inference

Tim Van Allen®, Ajit Singh®, Russell Greiner ©*, Peter Hooper ¢

Available online at m
*.* ScienceDirect Artificial
Intelligence
ELSEVIER Artificial Intelligence 172 (2008) 483-513

www elsevier.comvlocate/artint

There too has been some groundwork laid for this third area of suggeste research.
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NEW AREAS OF RESEARCH

Develop theory and tools for fractal Bayesian
networks & a deeper theory of causality
self-similarity
feedback loops ++ and — -

Merge Bayesian network modeling with
structured equation modeling (SEM)

Develop a means of explicitly representing
confidence in expert-judgment based nets

So | leave you with these suggestions for future research areas.
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The end! Now get to work.
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