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BrRuce G. MARCOT

Causal Modeling and the Role
of Expert Knowledge

Nature possesses stable causal mechanisms that, on a detailed level of descriptions,

are deterministic functional relationships between variables, some of which are

unobservable.

—Pearl (2000:43)

Time, space, and causality are only metaphors of knowledge, with which we explain

things to ourselves.

his chapter addresses the role of expert knowl-
Tedge in constructing models of wildlife-habitat
and stressor relationships and compares objectives
and results of guided model creation with machine-
learning and statistical model construction for various
modeling objectives. A critical look is given to defin-
ing expertise and how expert knowledge and experi-
ence can be codified and verified. I then discuss how
models can be structured from machine learning,
from expert knowledge, and from a synthesis of both
approaches to ensure credibility and validity of expert
knowledge—based models. Next, I address pitfalls and
uncertainties in the use of expert knowledge, and the
kinds of constructs best used to represent knowledge
and expert understanding, including mind mapping,
influence diagrams, and Bayesian networks.

Causality as a Concept and a
Modeling Construct

What Is Causality in an Ecological Model?

What constitutes causality in an ecological model,
and how do we know it when we see it? This seems
a trivial question, but trivial it is not. Ecological mod-
els are generally constructed from three major
sources: directly from empirical data, represented by

—Friedrich Nietzsche (quoted in Braezeale 1990)

mathematical or theoretical constructs, or inter-
preted from expert knowledge and experience.
Empirical-based models are typically constructed
from a variety of statistical frameworks. Mathemati-
cal or theoretical-based models are borne of known
or hypothesized analytic relationships. Expert-based
models are derived from practical experience and
personal expertise.

In all three cases, demonstrating and verifying
causality is more challenging than it may appear. For
one, empirical-based statistical models do not, and
cannot, identify causal relationships between some
ecological outcome and affector covariates; statisti-
cal models are based essentially on correlations, in-
cluding even some statistical approaches purported
to reveal causality, such as structural equation mod-
eling. Mathematical and theoretical models, like
expert-based models, are generally constructed with
the assumption of causality, but, again, the definitive
evidence of cause still hides in the shadows.

So what is causality in ecological modeling, and
how can it be identified, demonstrated, constructed,
and verified? When some condition C can be seen to
induce or affect some effect E, from a statistical per-
spective a true causal relationship can be asserted
only when all other alternative explanations can be
ruled out. This is the intent of clinical trials in med-
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ical experimentation, where condition C and its ab-
sence not-C are assigned randomly, with all other
conditions held constant and accounted for, and with
such a trial replicated many times over. Such exper-
imental designs are, at best, very difficult to achieve
in environmental laboratory conditions, and essen-
tially impossible in natural field conditions with
mixes of direct and indirect effects, time-lag effects,
variable site histories, and other knots in the causal
tapestry.

Take, for example, landscape ecology, where each
landscape study area is a sample size of one; we as-
sume away many complicating variables and focus on
the assumed proximate causes, that is, the most im-
mediate influence, while the ultimate influences can
muddle analysis and result in misinterpretation of
true causes. At the very least, we can ponder the na-
ture of hidden and unstudied causes, represented in
models as latent variables, which are those inferred
from the mathematical relation among other ob-
served variables (Rohr et al. 2010; Fig. 16.1). More
confusing are confounding variables that are simply
not measured, or in some cases are unmeasurable,
but that nonetheless influence outcomes. Ignoring
latent and confounding variables could result in as-
signing causality to the wrong factors, such as to some

Fig. 16.1.
population of eelworms (Nematoda). Shown are direct

effects among measured quantities (solid circles linked by

Causal diagram of factors controlling a

solid arrows) and unmeasured quantities (open circles
linked by dotted arrows). The unmeasured quantities
represent latent variables. Source: Pearl (1995).
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variable that correlates both with some outcome of
interest and to some other, unobserved variable that
is the true cause of the outcome.
Some approaches (e.g., Shipley 2013) purport to
utilize statistical techniques to test causal relation-
ships without latent variables and without prior
knowledge of how a system might work. Such ap-
proaches might be useful for formulating initial hy-
potheses about causality, but again they cannot de-
finitively determine causal structures in the absence
of repeated randomized trials or time-series explo-
rations of relationships in before-after conditions. In
attempting to account for effects of latent variables,
Guillemette and Larsen (2002) studied factors influ-
encing the abundance, distribution, and behavior of
wintering common eiders (Somateria mollissima) and
removed the confounding variable of prey abundance
from their model by randomizing its effect over the
study area. Similarly, King et al. (2005) factored out
their spatially autocorrelated confounding variables
when modeling ecological indicators of watershed
land cover. But such approaches serve more to hide
away those hidden influences rather than explicitly

incorporate them into the modeling structures.

Why Determine Causality?

So what is the importance of determining causality
in ecological modeling? In some cases, it may not be
a study objective if correlations suffice to provide
some degree of descriptive power. However, if expla-
nation is the objective, then causal modeling pro-
vides a trustworthy basis for forecasting, projecting,
and predicting outcomes. Moreover, identifying
causal relations can provide key information on man-
agement controllability of a system, such as the de-
gree to which prohibitions on poaching might serve
to conserve or restore an at-risk species that is also
subject to other environmental stressors. However,
Perdicoulis and Glasson (2012) found that environ-
mental impact assessments, at least in the United
Kingdom, typically do not explicitly identify causal

relations.
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Depicting Causality in Ecological Models

Causality can be depicted in ecological models with
a variety of constructs. One approach is to model a
chain of influences—for example, as Markov pro-
cesses, where a condition is influenced by other, or
prior, conditions just one step away in the sequence.
It is then the joint conditional influence of all steps
that produce the result. Such a construct is useful if
each step depicts a proximate causal relationship.
When conditions are influenced by unknown
continuous functions of other factors or with error
distributions, they can be depicted with interaction
terms as is done in generalized additive models
(GAMs) and generalized linear models (GLMs). For
example, Hofmeister et al. (2017) used GAMs to ex-
plain the causal effects of the size and conditions of
vegetation fragments on bird communities in central
Europe. From those relationships, the authors sur-
mised the types of timber harvesting that could be
more or less detrimental to the birds. But still, their
GAMs were based on correlations interpreted as di-
rect causal influences, such as common bird species
being most influenced by distance to the forest edge
and size and vegetation of the forest fragments. Ando
etal. (2017) used GLMs to determine that density of
Jezo spruce (Picea jezoensis var. hondoensis) in Japan

was adversely influenced by basal area of nearby ma-
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ture Jezo spruce trees and by the amount of cover of
the moss Pleurozium schreberi. However, as with the
previously mentioned study, the GLMs were based
on correlations of conditions; the authors inferred
causality from the study results.

When conditions are influenced by more than one
factor or when multiple factors combine in their
causal influence, then some forms of network mod-
els can be useful. They can take the form of path re-
gression models (e.g., Fig. 16.2), which denote par-
tial correlations among variables (e.g., Chbouki et al.
2005), network theory models (Upadhyay et al.
2017), and Bayesian probability network models
(Borsuk et al. 2006).

Ultimately, ecological modeling is the art of cor-
rectly interpreting correlations and simplifying mul-
tiple causal influences as cumulative effects. Time-
dynamic simulations, as with agent-based simulations
or individual movement models, can be useful to rep-
resent influences of potential causal factors in eco-
logical systems.

Expert Knowledge as a Basis for
Causal Modeling

Finally, expert-based models can be useful constructs
for depicting and exploring potential causal struc-
tures in ecological systems. Developing models

0.678
Seedlings —» Sm.Saplings ——» Med.Saplings ——» Lg.Saplings

Figure 16.2.
regression model depicting the strength

Example of a path

of causal relationships inferred from the
partial correlations (path coefficients).
Correlations are depicted on arrows
pointing from affectors to response
variables of the density of seedling and
sapling eastern hemlocks (Tsuga
canadensis) in conifer-hardwood forests
of upper Midwestern United States.
Source: Rooney et al. (2000).
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from personal experience can be an enticing enter-
prise, but can also be fraught with many biases, as
discussed further below.

Most fundamental to using expert knowledge as
a basis for causal modeling is the need to identify
what, or who, is an expert? The noun expert dates to
the early fifteenth century and refers to “a person
wise through experience”; the adjective expert, which
dates to the late fourteenth century and “having had
experience; skillful,” comes from the Old French es-
pert, meaning “experienced, practices, skilled” and
from the Latin expertus, “tried, proved, known by
experience.”

Such denotations avoid reference to superficial or
pedestrian understanding. Steels (1990) defined “ex-
pert knowledge” and “expertise” in terms of the de-
gree to which inference can be made from one’s un-
derstanding, the depth of that knowledge, and the
degree to which such knowledge can be useful for
problem-solving methods. Caley et al. (2014) devel-
oped a scoring system to rate the degree of expertise
in taxonomy based on some 18 factors distilled into
descriptions of the person’s quality of work and total
productivity. Other similar definitions of expertise
and expert knowledge exist in the literature.

Here, the focus is on building credible and reliable
ecological causal models from expert knowledge, and
not from inexpert value judgment or personal opin-
ion. Approaches to collecting and representing ex-
pert knowledge can range from single-expert inter-
views to highly structured expert panels (Ayyub
2001; Ayyub and Klir 2006; Cooke 1991). A rigorous
approach to expert paneling is presented farther
below.

Determining Causality in
Ecological Systems
Causality and Study Designs

No model can tell causality; that is inferred by the
researcher from the context of the system being mod-
eled. One must proceed cautiously when interpret-
ing correlation, especially spatial or temporal auto-
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correlation, as causation. Well-designed experimental
studies that implement management guidelines can
go a long way to helping researchers infer—or at
least hypothesize—causality and determining the de-
gree to which management affects ecological sys-
tems in desired, or undesired, ways; this is the heart
of active adaptive management (Gunderson 1999;
Williams 2011). Study designs and approaches to
adaptive management can run the gamut of some
seven types (Marcot 1998)—literature review, expert
judgment, demonstration, anecdote, retrospective
study, nonexperimental study, and experimental
study; the last of these provides the most definitive
evidence from which to infer causality, although it is
the most difficult to perform in situ.

Analytical Approaches to Determine
Causality

In evaluating study results, a variety of analytical ap-
proaches can be useful for inferring causality. One
such construct is structural equation modeling
(SEM) with path analysis (Pear]l 2011) and graph-
theoretic representation (Grace et al. 2012), which
can account for latent variables (Bollen 1989) and
indirect effects (Clough 2012). SEM is more of a
method for building causal relationships among vari-
ables, such as with construction of influence dia-
grams, than it is a specific analytic structure per se.
An approach analogous to SEM is that of Bayesian
networks. SEM and Bayesian network modeling
share some traits but take different approaches
(Table 16.1; Pearl 2000).

Another means of inferring causality is with d-
separation (d is for dependence or directional), which
is a procedure to help determine if two variables are
independently conditional on a third variable
(Clough 2012). Typically, d-separation is used in
causal webs, influence diagrams, and probability net-
works. Also used are hidden Markov models (e.g.,
Etterson 2013) that can help reveal correlates and po-
tential causal factors in state-path animal move-
ment data. Sugihara et al. (2012) suggested using
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Table 16.1. Congruence and isomorphisms between structural equation modeling (SEM) and Bayesian network

(BN) modeling.

Structural equation modeling

Bayesian network modeling

EFA (exploratory factor analysis; Ullman 2006)

CFA (confirmatory factor analysis) and network induction and
updating (Ullman 2006)

SEM diagramming

Path regression modeling to identify degree of correlation and
influence of covariates

Latent variables (unobserved, not directly observed; Ullman 2006)
Counterfactual analysis

Depiction of uncertainty: error terms

Confidence intervals

Explanatory power of covariates: standardized regression coefficients
or partial correlation coefficients in a path regression model

Induction of naive Bayes networks from data sets

Incorporation of case files to update probability tables (e.g., by use
of the expectation maximization algorithm)

Influence diagramming to denote logical and causal relations
among variables based on expert knowledge

Structure-induction algorithms to denote variable relations based
on case data sets

Latent (hidden, summary) nodes

Influence analysis (sensu Marcot 2012)

Depiction of uncertainty: posterior probability distributions
Credible intervals

Explanatory power of covariates: sensitivity values
of node

hindcasting to measure the degree to which histori-
cal records of some presumed causal precondition
can reliably estimate some outcome effects, calling
this approach “convergent cross mapping”.

Still another approach is what is called power
probabilistic contrast (PC) theory, which is used
more in psychology (Buehner et al. 2003; Cheng
1997) but is generally applicable to inferring causal-
ity in any system. This method determines the power
of a potential cause ¢ normalized by the influence on
the effect e (Collins and Shanks 2006). In general, a
main contrast effect is calculated as AP(e|c)=
P(e|c) —P(e|~c), or the difference between the prob-
ability of the eflect, given the cause, minus the prob-
ability of the effect, not given the cause (the “not-
cause”). High main-contrast values suggest a greater
degree of causal linkage between ¢ and e.

Using Expert Knowledge in
Causal Modeling

Given how tricky—and misleading—it can be to de-
finitively determine proximate, ultimate, and indi-

rect causality in ecological systems, it is no surprise

that many models are constructed from expert
knowledge. This is no new approach, having been
used in modeling and analysis of environmental sys-
tems for many years (e.g., O’Keefe et al. 1987). There
is a potential dark side, however, to relying on expert
knowledge in structuring ecological models, and it
is related to numerous pitfalls and uncertainties.

Pitfalls and Uncertainties in Using
Expert Knowledge

For one, expertise can be biased in various ways. One
set of biases can be characterized in terms of a “psy-
chology of uncertainty,” which reflects the ways that
people estimate probabilities, frequencies, or impli-
cations of events or situations. For example, Balph
and Romesburg 1986 addressed the role of observer-
expectancy bias as one aspect of systematic error in
avian studies. In another example, people tend to
more heavily weight more immediate events and
costs over future events and costs, even if future
events and costs might be far more dire. This is the
“immediacy effect” (Gideon and Roelofsma 1995)

and explains why we are less concerned with aster-
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oid strikes than with potholes in our streets. It may
also play out in emphasizing more proximate causes,
such as current weather, over less immediate
ultimate or more indirect causes, such as climate
change, even if the latter tend to have greater con-
trol over the system in question.

Another potential bias in using expert knowledge
to structure ecological models pertains to having in-
complete experience or, worse, being unaware of
having incomplete experience. This is “ignorance of
ignorance,” sometimes referred to as the “unknown
unknowns.” In a sense, then, what you don’t know
can hurt you, or at least bias the model. A variant of
this bias is the Dunning-Kruger effect that states that
people who lack the expertise to perform well are of-
ten unaware of this fact (Kruger and Dunning 1999).

Ahost of other potential biases can arise in group
activities such as in expert paneling to derive collec-
tive knowledge for structuring ecological models;
even group facilitators can hold bias and adversely
influence outcomes (Table 16.2). For instance, the
emotional state of an expert can taint how he or she
recollects experience (Tambini et al. 2017). A rigor-
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ous approach to holding expert panels is suggested
below.

In summary, expertise can be biased, and exper-
tise can be partial. And expertise is based on personal
experience, meaning past or current conditions, not

novel future conditions.

Modeling Frameworks for Structuring
Expert Knowledge

So what are some useful tools for depicting and struc-
turing expert knowledge? Some modeling frame-
works that can help organize thinking are mind maps
and cognitive maps, which, at their simplest, are di-
agrams of variables and their causal, correlational,
or logical connections (Lee and Danileiko 2014).
Think of a diagram of a food web, which is, in es-
sence, a cognitive map of the trophic structure of an
ecosystem (e.g., Fig. 16.3). When parameterized with
bioenergetic flow rates, food webs can be useful cog-
nitive maps for exploring the implications of species
loss (Zhao et al. 2017) and associated trophic cas-
cades of ecosystems (Canning and Death 2017).

Table 16.2. Potential biases when using expert knowledge to structure an ecological model. These biases pertain to

eliciting knowledge from an expert or from expert panels.

Bias Description

Expert bias: emotional

Unconsciously representing some causal effect to be more or less effective than it actually is,

because of expert’s mood or attitude toward the subject.

Expert bias: expectation, motivational

Providing an answer expecting that the recipient or user of the answer will misuse the

information or will behave in a manner with which the expert does not agree.

Expert bias: lexicon uncertainty
Expert bias: lack of knowledge parity
Group bias: anchoring

Group bias: bandwagoning

Group bias: domineering

Differing on definitions of key terms.

Differing in levels of understanding and knowledge of a key topic.
Adhering to information either recently encountered even if irrelevant.
Everyone on a panel going along with one answer or idea.

Dominating the discussion by a single voice or personality or intimidating others to

concede to his or her view.

Cognitive bias: plausibility
to be probable.

Facilitator bias: herding
Facilitator bias: charisma

Facilitator bias: last opinion

Giving a line of thought undue weight because it seems plausible and is thus deemed

Guiding the group to one idea and downplaying others.
Favoring views of the more charismatic or “big name” experts.

Favoring the last expressed opinion; also called the “last speaker effect.”
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Vasslides and Jensen (2016) used fuzzy cognitive
maps (depicting degrees or probabilities of connec-
tions among variables) to model an estuarine system
and to compare four stakeholder groups’ perceptions
of social and ecological factors affecting the system.
Similarly, Elsawah et al. (2015) used cognitive maps
to help depict mental models of factors affecting vi-
ticulture irrigation in South Australia, and as a con-
struct from which to build more quantitative agent-
based models (see Chapter 10 of this volume). When
parameterized with probabilities of states and inter-
actions, cognitive maps become influence diagrams
and the basis of probability-based models such as
Bayesian networks.

How Reliable Is Expert Knowledge?

But how reliable is expert knowledge as a basis for
constructing and using ecological models? Reliabil-
ity and credibility are related to the degree to which
any such model can be subjected to strict peer re-
view, calibration, updating, and validation.

regional
warming

polar bear prey
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Figure 16.3. Example of a cognitive map of a
polar bear (Ursus maritimus) food web in the
Arctic.

Ensuring Credibility and Validity of
Expert-Based Causal Models

Insofar as possible, cross-validation using portions of
independent data sets is the best measure, although
with some expert-based models, as with testing
stakeholder perceptions (Ozesmi and Ozesmi 2003),
empirical case data are not really available or feasi-
ble. In such situations, one could compile a case da-
tabase of the judgments of experts not used to con-
struct the original model, and then test and adjust
the model against that database, although this really
amounts to calibrating a model against other experts,
and not validating the model per se.

Crowd-Sourcing Expert Knowledge

One approach to developing models is using the
“wisdom of the crowd” (Lyon and Pacuit 2013), as
Eikelboom and Janssen (2017) did in involving stake-
holders to address climate-change adaptation plan-
ning by using geodesign tools. Much due caution,
however, is indicated when accepting opinions or
judgments (Koriat 2012), even from multiple ex-
perts, without careful vetting and review.
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This extends to use of, and cautions for, informa-
tion derived from “citizen science” projects (Vil-
lasefior et al. 2016). Kosmala et al. (2016) offered a
set of criteria for helping ensure the veracity of citi-
zen science monitoring data: iterative project devel-
opment, volunteer training and testing, expert vali-
dation, replication across volunteers, and statistical
modeling of systematic error.

Use of Expert Panels

Can the collective wisdom of multiple experts be
wrong? (Spoiler alert: yes, but this can be corrected.)
An approach to securing reliable input from multiple
experts for developing causal ecological models is a
rigorous use of expert panels. Following are steps for
gathering knowledge from multiple experts in an orga-
nized process (after Marcot et al. 2012; also see Ayyub
2001; Burgman 2016; Krueger et al. 2017; and others).

STEP 1. CLEARLY STATE OBJECTIVES
This is self-evident, but it is surprising how often ex-
perts are consulted and models are constructed with
vaguely stated goals and purposes. Remember, build-
ing a causal model for the aim of understanding and
managing some ecological system is a method, not
an objective. Objectives should be stated in terms of
the specific condition to be evaluated and/or man-
aged. For example, an objective could be to deter-
mine the viability outcome for some listed species
under a suite of possible management activities.

The objectives should also clearly state if the pur-
pose of securing expertise is to develop a single de-
piction representing all experts’ collective knowledge,
as with reaching consensus under the traditional
Delphi paneling process (MacMillan and Marshall
2006), or if the objective is to depict the variation
of knowledge among experts.

STEP 2. IDENTIFY PANELISTS AND PROVIDE
PRE-MEETING MATERIALS

A key to holding a successful expert panel is to en-

gage individuals who can work well with others in a
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panel setting, not try to dominate the panel, and who
can “think beyond the data”—that is, who are com-
fortable extrapolating their experience beyond the
boundaries of strict empirical studies. Depending on
the project objectives, it may be useful to invite pan-
elists who represent a spectrum of expertise and
knowledge, such as from different geographic loca-
tions or ecosystems or ecological conditions. Also, it
is useful to aim for an uneven number of panelists
so that equally-numbered “teams” do not form on
some issue. Panels of five or, at most, seven members
seem to work best and still allow for independent
contributions.

Pre-meeting materials are quite helpful for alert-
ing invited panelists as to the specific objectives for
the panel, the type and subject of their knowledge
that is sought, how the panel will be held, and what
will be done with their knowledge. Materials can in-
clude a few background papers or readings. For ex-
ample, materials may include a status summary of
the species of interest, including its biology and ecol-
ogy, and threats to its viability, and also the set of
management activities to be considered when eval-
uating the species’ viability response.

The materials would also include a brief glossary
of key terms—for instance, in our example here,
definitions of “recovery,” “viability,” “extirpation,”
“threat,” «
management alternatives to be considered. The ma-

stressor,” and other terms related to the

terials should also define the terms used in an infor-
mation or scoring sheet, such as levels of potential
response in a viability rating scale, if the panelists
will be asked to score outcomes. The overall aim here
is to avoid “lexicon uncertainty,” so that everyone
uses the same definitions of the terms, and to reach
“knowledge parity,” so that everyone arriving at the
panel has the same background understanding of
concepts.

STEP 3. BEGIN PANEL REVIEW OF THE
WORKSHEET AND TERMS

Here starts the actual panel meeting, best done in

person with a panel facilitator. Typically, expert
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panels are convened to provide specific information
or to rate or rank some alternative conditions, using
a text worksheet or some scoring table. The facilita-
tor would begin by reviewing the overall objectives
for the panel, the background pre-meeting materials,
the worksheet, and key terms. Again, the objective
is to ensure that all panelists understand the pur-
pose, context, and terminology the same way and
the same degree.

STEP 4. PERFORM INITIAL (ROUND 1) SCORING

If the purpose of the panel is to provide scores of out-
comes, such as levels of viability of an at-risk species
under a suite of potential management actions, this
step entails having the panelists independently and
silently write down their scores, encouraged by the
facilitator to do independent thinking. As an exam-
ple, panelists might be asked to allocate 100 points
among one or more of possible levels on a viability
outcome scale, for each of a set of potential manage-
ment actions, whereby spreading their points (to
sum to 100) among >1 outcome level would repre-
sent their degree of uncertainty of outcomes. Panel-
ists may also be asked to write down brief explana-
tions of the type and strength of evidence that led
them to denote which outcome would be most likely,
and the key uncertainties that may have led them to
spread their points among >1 outcome level.

STEP 5. ENGAGE IN STRUCTURED DISCLOSURE
AND DISCUSSION
Next, the facilitator would have each panelist in turn
reveal his or her scores and explain the evidence and
uncertainties he or she considered. Each panelist
would have equal time and opportunity for this ex-
planation, uninterrupted. At the end of the disclo-
sures, the panelists would then have an opportunity
to ask questions of each other and offer their perspec-
tives. The purpose of the discussion phase is for
panelists to learn from each other, not for attempt-
ing to convince other panelists of the merits of one’s
scores and ideas. If the panelists were selected to rep-
resent a diversity of experience and knowledge,

QUANTITATIVE ANALYSES IN WILDLIFE SCIENCE

then the contribution of every panelist has equal
value.

Some expert panels may be held with an audience
of others with specific subject knowledge that may
be pertinent to the issue at hand, such as with man-
agers or biologists who do not specifically serve on
the panel. The facilitator would have had the audi-
ence remain silent to this point, but now could open
the floor for any brief contributions or clarification
questions that the audience members may wish to
provide. Again, the aim here is not for audience
members to convert panelists’ thinking, but to in-
form for the purpose of mutual learning.

STEP 6. PERFORM SECOND (ROUND 2) SCORING
At this time, the facilitator has the panelists do an-
other round of scoring in which they are free to re-
tain their round 1 scores or update any scores based
on what they may have learned from the structured
disclosure and discussion from step 5. Again, scoring
is to be done silently and independently, if the aim is
to collect individual knowledge from each panelist.

STEP 7. ENGAGE IN STRUCTURED DISCLOSURE
AND DISCUSSION

The facilitator then engages the panelists in another

round of structured disclosure and discussion. As

may be necessary, there may then be further rounds

of scoring, disclosure, and discussion, but typically

two rounds suffice to satisfy panelists’ contributions.

STEP 8. REVIEW RESULTS

The facilitator can then quickly compile and review
the final scores, and panelists may be given a last op-
portunity to clarify or explain their contributions.
At this point the expert panel procedures are
completed.

The overall roles of the panel facilitator are to en-
sure that panel discussions remain focused on the
science; that the panelists adhere to the procedures
of scoring, disclosure, and discussion; that the panel
is held to the prescribed schedule for completion;
that audience members follow such procedures; and
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that the panelists’ information is duly recorded and
presented. It may be useful to have a scribe present
at an expert panel to record discussions and informa-
tion not captured in the panelists’ worksheets. It is
also useful, in the final report of the panel outcome,
to acknowledge the panelists’ participation but to
keep their individual contributions anonymous; this
encourages the panelists to speak freely without
worry of specific attribution for any statements or
contributions that could be misinterpreted or taken
out of context.

Following such a rigorous paneling procedure can
help ensure, in an efficient and credible manner, that
expert knowledge can be garnered to suggest out-
comes, reduce areas of uncertainty, identify topics
requiring further exploration or study, and to best
represent collective knowledge and experience.

Using Expert Knowledge in
Causal Modeling

In the end, expert knowledge, such as that gathered
through an expert panel or another expert knowl-
edge elicitation approach, can provide the basis for
developing cognitive maps, mind maps, influence di-
agrams, and models representing causal influences
in some ecological system. Beyond the initial min-
ing of expert knowledge, it is then the use of peer re-
view that can help ensure reliability, the use of vali-
dation to ensure robustness, and the updating of the
knowledge base to ensure longevity and utility of the
resulting models. The target is to use uncertainty as
information to guide and temper management deci-
sions in a risk analysis, risk management, and over-
all structured decision-making framework (Sloman
2009).
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