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PPD = posterior probability distribution 

 
 

Model sensitivity analysis 
variance 

reduction 
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∑  ( )   , where    is the numeric real 

value of state q,  ( ) is the expected real 

value of Q before applying new findings, 

 (   ) is the expected real value of Q 

after applying new findings f for variable 

F, and  ( ) is the variance of the real 

value of Q before any new findings 

[0,infinity], the greater 

the value, the more 

sensitive is a resultant 

node Q to the node in 

question F; used with 

continuous variables 

Marcot et al. 2006, Marcot 

2012 

entropy 

reduction 

Entropy reduction, I, is calculated as the 

expected reduction in mutual information 

of Q from a finding for variable F, 

calculated as  
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where  ( ) is the entropy of Q before any 

new findings,  (   ) is the entropy of Q 

after new findings from variable F, and Q 

is measured in information bits 

[0,infinity] , the greater 

the value, the more 

sensitive is a resultant 

node Q to the node in 

question F; used with 

discrete variables 

Marcot et al. 2006, Marcot 

2012 

case file 

simulation 

generate a large number of simulated data 

sets and analyzing the covariation between 

values of input variables and PPDs 

not a scalar value; the 

higher the covariation, the 

greater the sensitivity 

Marcot et al. 2006, 

Thogmartin 2010 

 

 

 

Scenario analysis 
influence runs evaluating effects on PPDs from selected 

input variables set to best- or worst-case 

scenario values 

not a scalar value; the 

greater the deviation from 

the normative PPD, the 

greater is the influence 

Marcot et al. 2012 

 

 

Model complexity 
number of model 

variables 

count of number of network nodes [0,infinity]; the higher the 

value, the more complex 

the model 

Marcot 2012 

number of model 

links 

count of number of network node 

connections 

[0,infinity] ; the higher 

the value, the more 

complex the model 

Marcot 2012 



number of model 

node states 

count of all states among all nodes [0,infinity] ; the higher 

the value, the more 

complex the model 

Marcot 2012 

number of 

conditional 

probabilities 

∑ [ ∏   
 
   ] 

   , where S = no. states of 

the child node, Pj = no. of states of the j
th
 

parent node, for n parent nodes, among all 

V nodes in the model.   

[0,infinity] ; the higher 

the value, the more 

complex the model 

Marcot 2012 

number of node 

cliques 

count of all network cliques in the model [0,infinity] ; the higher 

the value, the more 

complex the model 

Marcot 2012 

 

 

Prediction performance 
confusion matrix numbers of false positives (Type I error, 

rejecting a true hypothesis), false negatives 

(Type II error, failing to reject a false 

hypothesis), and their sum 

[0,n], n = total number of 

test cases; or [0,1] if put 

on a proportional basis; 

the higher the values, the 

greater is the 

classification error rate 

Marcot 2012 

covariate-

weighted 

confusion error 

rate 

confusion matrix Type I, Type II, and total 

error rates, times the number of covariates 

(nodes) in the model 

[0,nc], n = total number 

of test cases, c = number 

of covariates in the 

model; or [0,1] if put on a 

proportional basis; the 

higher the values, the 

greater is the 

classification error rate 

Marcot 2012 

conditional 

probability-

weighted 

confusion error 

rate 

confusion matrix Type I, Type II, and total 

error rates, times the number of conditional 

probabilities in the model 

[0,np], n = total number 

of test cases, p = number 

of conditional 

probabilities in the 

model; or [0,1] if put on a 

proportional basis; the 

higher the values, the 

greater is the 

classification error rate 

Marcot 2012 

AUC under ROC area under the receiver operating 

characteristic (ROC) curve, which plots 

the percent true positives (“sensitivity”) as 

a function of their complement, percent 

false positives (“1-specificity”) 

[0,1], where 1 denotes no 

error, 0.5 denotes totally 

random models, and < 0.5 

denotes models that more 

often provide wrong 

predictions 

Dlamini 2010, Hand 1997 

k-fold cross-

validation 

one randomizes the case file set; 

sequentially numbers the resulting cases; 

extracts the first 1/k
th
 of the cases in 

sequence; parameterizes the model with 

the remaining [1 – 1/k] cases; and then 

tests that model against the first 1/k
th
 cases 

left out, recording confusion error rates of 

model predication.  Next, the second 1/k
th
 

set of cases are extracted from the full case 

file set, and the procedure is repeated until 

all k case subsets have been used.  The 

resulting k confusion tables are then 

averaged for overall model performance.   

see above under 

confusion matrix 

Boyce et al. 2002, Cheng 

and Greiner n.d.; also see 

Cawley and Talbot 2007 for 

the “leave-one-out cross-

validation procedure” 



spherical payoff         
  

√∑   
  

   

, where MOAC = 

mean probability value of a given state 

averaged over all cases, Pc = the predicted 

probability of the correct state, Pj = the 

predicted probability of state j, and n = 

total number of states 

[0,1], 1 denotes best 

model performance 

B. Boerlage, pers. comm., 

Marcot 2012 

Schwarz’ 

Bayesian 

information 

criterion 

         (  )      ( ), where ML 

= maximum likelihood value, k = number 

of parameters in the model, and n = 

number of observations; then subtract the 

lowest BIC value among all alternative 

model forms being compared from the BIC 

value of each alternative model 

the smallest difference 

(ΔBIC) denotes the best-

performing and most 

parsimonious model, that 

is, the model that best 

balances model error and 

dimension 

Schwarz 1978 

true skill statistic 

(Hanssen-Kuiper 

discriminant or 

skill score) 

for a 2-state outcome,     
(     )

(   )(   )
, 

where a = true positives, b = Type II error 

(false positives), c = Type I errors (false 

negatives), and d = true negatives, all 

represented either as absolute or relative 

frequencies 

useful only with 2x2 

confusion matrices; [-

1,1], where 1 represents a 

perfectly performing 

model with no error, 0 a 

model with totally 

random error, and -1 a 

model with total error 

Allouche et al. 2006, 

Mouton et al. 2010 

Cohen’s kappa the difference between correct 

observations and expected outcomes, 

divided by the complement of expected 

outcomes; Kappa is calculated as the 

difference between correct observations O 

and expected outcomes E, divided by the 

complement of expected, or   
   

   
, 

where   
   

 
,   

(   )(   ) (   )(   )

  , and 

  (       ). 

[0,1], with 1 being perfect 

classification 

Gutzwiller and Flather 

2011, Zarnetske et al. 2007 

logarithmic loss LL = MOAC [- log (Pc)], where MOAC = 

mean probability value of a given state 

averaged over all cases, Pc = the predicted 

probability of the correct state 

[0,infinity], 0 = best 

performance 

Dlamini 2010, Norsys \1 

 

quadratic loss 

(Brier score) 

QL = MOAC [1 - 2 * Pc + sum[j=1 to n] 

(Pj ^ 2)], where MOAC = mean probability 

value of a given state averaged over all 

cases, Pc = the predicted probability of the 

correct state, Pj = the predicted probability 

of state j, and n = total number of states 

[0,2], 0 = best 

performance 

Norsys \1 

 

 

  



Uncertainty of posterior probability distribution 
Bayesian 

credible interval 

An X% Bayesian credible interval of some 

PPD of an ordinal or continuous scale 

variable (but not a categorical variable) 

refers to state-wise probabilities when 

X/2% is excluded from the lowest and 

highest outcome states.  Put another way, 

it is the interval determined for the 

expected value over replicate calculations 

based on uncertainty distributions of the 

input variables, not for the PPD of a given 

instance of input values.   

(not a scalar value) Bolstad 2007, Curran 

2005 

posterior 

probability 

certainty index 

(PPCI) 

PPDs which consist of pi probability 

values among N number of states, where 

pi ranges [0,1] and ∑          
     PPCI 

is calculated as (1-J’), where J’ = 

H’/H’max,  
   ∑   

 
    , where 

  {
   (  )     

      
    

and         ( ).  J’ normalizes the 

metric proportional to N, so that the 

degree of certainty of PPDs can be 

compared among outcomes with different 

numbers of states N.   

PPCI ranges [0,1] with higher 

values denoting greater certainty 

(greater loading of outcome 

probabilities into fewer outcome 

states).  Models with higher 

PPCI values of their PPDs 

denote greater certainty in 

outcome predictions.   

Marcot 2012 

certainty 

envelope 

PPCIMIN is calculated as  
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and PPCIMAX is calculated as 
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where L is defined above. 

For a given PPD with a specified 

probability of a given state or set 

of j states,  

PPCIMIN ≤ [PPCI | P(j)] ≤ PPCIMAX.  

To best compare PPCI values 

among competing models 

particularly with different total 

numbers of states N or different 

numbers of specified state 

values j, the range [PPCIMIN, 

PPCIMAX] can itself be 

normalized to [0,1], and the 

relative position of a given value 

of [PPCI | P(j)] within this range 

can be calculated by simple 

linear interpolation.  Thus, the 

interpolated value of [PPCI | 

P(j)] represents the proportion 

(or percentage) of total possible 

certainty for a given outcome 

state(s) j. 

Marcot 2012 

Gini coefficient calculated as the area under the Lorenz 

curve, which, applied to BN modeling, is 

the cumulative probability among 

outcome states rank-ordered by decreasing 

values of their individual probabilities; 

also see Marcot 2012 for a normalizing 

correction factor  

2x the Gini coefficient ranges 

[0,1), where 0 represents a 

uniform probability distribution 

(complete uncertainty) and 1 

represents a distribution with 

one state at 100% probability 

and all other states at 0% 

(complete certainty). 

Marcot 2012 

 

\1 http://www.norsys.com/WebHelp/NETICA/X_Scoring_Rule_Results.htm 

 

http://www.norsys.com/WebHelp/NETICA/X_Scoring_Rule_Results.htm
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