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Abstract: Bayesian belief networks (BBNs) are useful tools for modeling ecological predictions and aiding resource-
management decision-making. We provide practical guidelines for developing, testing, and revising BBNs. Primary
steps in this process include creating influence diagrams of the hypothesized “causal web” of key factors affecting a
species or ecological outcome of interest; developing a first, alpha-level BBN model from the influence diagram; revis-
ing the model after expert review; testing and calibrating the model with case files to create a beta-level model; and
updating the model structure and conditional probabilities with new validation data, creating the final-application
gamma-level model. We illustrate and discuss these steps with an empirically based BBN model of factors influencing
probability of capture of northern flying squirrels (Glaucomys sabrinus (Shaw)). Testing and updating BBNs, especially
with peer review and calibration, are essential to ensure their credibility and reduce bias. Our guidelines provide mod-
elers with insights that allow them to avoid potentially spurious or unreliable models.

Résumé : Les réseaux de croyance bayésiens (RCB) sont des outils utiles pour faire des prédictions de nature écolo-
gique à l’aide de modèles et pour aider dans la prise de décision en aménagement des ressources. Nous fournissons des
directives pratiques pour développer, tester et réviser des RCB. Les principales étapes dans ce processus incluent : la
création d’un diagramme d’influences du « réseau causal » hypothétique des facteurs-clefs qui affectent une espèce ou
un enjeu écologique d’intérêt; le développement d’un premier modèle RCB de niveau alpha à partir du diagramme
d’influences; la révision du modèle par des experts; l’essai et la calibration du modèle à partir d’études de cas; la créa-
tion d’un modèle de niveau bêta; l’actualisation de la structure et des probabilités conditionnelles du modèle à partir de
données de validation et la création d’un modèle final d’application, de niveau gamma. Nous illustrons et discutons ces
étapes à l’aide d’un modèle RCB empirique des facteurs qui influencent la capture des grands polatouches (Glaucomys
sabrinus (Shaw)). L’essai et l’actualisation des RCB, surtout à l’aide de révisions par les pairs et de la calibration, sont
essentiels pour assurer leur crédibilité et réduire les biais. Nos directives donnent aux modélisateurs des indications
pour éviter les modèles potentiellement inexacts ou peu fiables.

[Traduit par la Rédaction] Marcot et al. 3074

Introduction

Quantifying the relationships between ecological variables
(e.g., species’ occurrence, attributes of organisms, communi-
ties, or ecosystems, and their functional behavior) and sam-

ple measurements obtained from a set of possibly related ob-
servations remains a fundamental problem of inference in
ecology. Bayesian belief networks (BBNs; also called proba-
bility networks) are statistical tools used in ecology and
wildlife management to depict the influence of habitat or en-
vironmental predictor variables on ecological-response vari-
ables. Examples include BBN models of the response by
wolverine (Gulo gulo (Linnaeus, 1758); Rowland et al.
2003) and greater sage grouse (Centrocercus urophasianus
(Bonaparte, 1827); Wisdom et al. 2002a, 2002b) to habitat
patterns across landscapes, the viability of salmonid popula-
tions (Lee and Rieman 1997) in the interior northwest USA,
and prediction of water quality in the southeast USA
(Reckhow 1999). In such uses, BBNs predict the probability
of ecological responses to varying input assumptions such as
habitat and population-demography conditions. Ideally,
BBNs serve well as part of a risk-management framework
by explicitly displaying the “causal web” of interacting fac-
tors and the probabilities of multiple states of predictor and
response variables.

Development of the BBNs cited above, however, appar-
ently did not follow a standard process. Some authors devel-
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oped BBNs based strictly on expert judgment from
individuals or expert panels. Few authors attempted to cali-
brate and validate their models. None apparently updated
their models on the basis of validation outcomes and empiri-
cal case data. What is needed is a set of guidelines and
insights to help modelers avoid potentially spurious or unre-
liable models. Methods suggested in this paper provide a
standard procedure to accomplish this objective.

In this paper we will presume that the reader has a basic
knowledge of BBN structures and how to construct a rudi-
mentary BBN model. Introductory references are available
on the statistical structure of BBNs and related Bayesian
modeling schema (e.g., Cain et al. 1999; Charniak 1991;
Jensen 1996; Zhang and Poole 1996). However, practical
guidelines for correctly and efficiently developing BBNs are
scattered widely in the literature (e.g., Castillo et al. 1998;
Marcot et al. 2001; Reckhow 1999; Varis 1997), and useful
sources in the gray literature are not generally available
(e.g., Cain 2001; Heckerman et al. 1994). The objective of
this paper is to provide a set of practical guidelines for de-
veloping, testing, and revising BBNs for wildlife and eco-
logical assessment.

We draw from our extensive experience in BBN-model
construction (for examples see other papers in this issue),
where we developed and successfully applied these guide-
lines. We use the BBN-modeling shell Netica® (versions
2.17 or later, Norsys Systems Corp., Vancouver, British Co-
lumbia), although other BBN-modeling tools are also avail-
able and our suggestions may pertain to those tools as well.

Here we (i) describe the steps for creating, testing, cali-
brating, and updating BBN models at three levels (alpha,
beta, gamma); (ii) discuss BBN models in relation to other
statistical models; and (iii) provide recommendations on ap-
propriate construction and interpretation of BBN models for
ecological prediction and aid in decision-making. Our guide-
lines include ways to correctly and efficiently craft a BBN
model and appropriate uses of the model. We use as an ex-
ample a BBN model predicting the probability of capturing
northern flying squirrels (Glaucomys sabrinus (Shaw)).

Creating the alpha-level model

Converting the influence diagram to an initial BBN
The first step is to illustrate the “ecological causal web”

of the key environmental correlates or other influences af-
fecting the species or outcome of interest. This can be done
using influence diagrams (Oliver and Smith 1990; Reckhow
1999; Shachter and Kenley 1989), which, at their simplest,
are figures consisting of boxes and arrows showing rele-
vance and influence among variables (Fig. 1). Depending on
the intended use of the model, several influence diagrams
may be constructed at various spatial scales.

This first step is often done in discussion with species or
subject-matter experts and after an initial review of the liter-
ature. For example, after identifying the species of interest,
experts and literature can be consulted to list all key environ-
mental correlates. These can then be arranged into an influ-
ence diagram showing expected causal influences on the
species of interest. In our example here (Fig. 1), the outcome
of interest is prediction of the probability of capturing a
northern flying squirrel at a particular trap site. Based on

field experience, we believe that capture probability is
influenced both by detectability of the organism, which is a
function of time of year (date) and trapping intensity (num-
ber of trap-nights), and by occupancy of the trapping area,
which may be a function of the quality of the surrounding
forest habitat (habitat suitability) and whether or not habitat
suitability is even pertinent (response model).

The influence diagram can then be developed into an ini-
tial BBN where each node (box) is converted to a set of dis-
crete states (such as squirrel capture probability classes in
our example). “Parent” nodes feed into “child” nodes. Fol-
lowing through the network, a child node may then become
a parent to other nodes. Conditional probabilities for the
states of each child node are then specified for all combina-
tions of states of their parent nodes. We distinguish between
probabilities, which are frequencies of outcome states given
a set of causal conditions, and likelihoods, which are poten-
tial causes given an outcome state.

Converting influence diagrams to BBNs can involve so-
phisticated learning algorithms (Shachter 1988; Smith et al.
1993; Zhang 1998), but we defer presenting these to a later
step when we discuss updating BBNs from field data. The
current step can also be done simply from consultation with
a species or domain expert to specify the states and equa-
tions in each BBN node (Fig. 2; Appendix A).

We have found the following guidelines useful for devel-
oping the initial structure of the BBN:
(1) As far as possible, the number of parent nodes to any

given node should be kept to three or fewer (e.g., no
node in Fig. 2 has greater than three parent nodes) and
the number of their states to five or fewer. This keeps
the associated conditional-probability table (CPT; see
below) small enough to be tractable and understandable
if it is to be specified by the modeler and experts rather
than by equations or case data. The size of the CPT of
the child node is equal to the number of states of the
child node times the product of the number of states of

all parent nodes, or with n parent nodes, S Pi
i

n

=
∏

1

where S

is the number of states of the child node and Pi is the
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Fig. 1. Example of a simple influence diagram showing key fac-
tors affecting expected capture of northern flying squirrels
(Glaucomys sabrinus (Shaw)). Capture is shown to be dependent
on detectability, which is influenced by date and trapping effort,
and by occupancy, which may or may not be influenced by suit-
ability of local habitat (forest) conditions (response model).
Since such diagrams are best used as a basis for further model-
ing, the correlates shown should also express causal relation-
ships, so that the diagram becomes a “causal web”.



number of states of the ith parent node. An exception to
this guideline occurs when the objective is to represent
a complex ecological process where representing that
complexity may be more important than predictive ac-
curacy or model parsimony.

(2) Parentless (input) nodes — typically representing pre-
dictor habitat and environmental factors (e.g.,“date” and
“habitat suitability” nodes in Fig. 2) — should be those
items that can be preprocessed or empirically evaluated
from existing data, such as geographic information sys-
tems (GIS).

(3) Intermediate nodes (e.g.,“detection” and “occupancy”
nodes in Fig. 2) should be used to summarize the major
themes (the “latent variables”) denoted in the general-
ized species influence diagrams.

(4) To the extent possible, all nodes should be observable
and quantifiable or testable entities. In some cases, in-
termediate nodes may not be so, but should still be care-
fully documented and explained.

(5) The fewest discrete states necessary within any given
node should be used to represent influences, but enough
states should be used to ensure the desired precision of
estimates and the range of input values in the model
(e.g., the date node in Fig. 2 has 10 states to be used in
calculating detection probability, but only two states are
used to depict two alternative habitat models in the “re-
sponse model” node). This is a balance between parsi-
mony and precision. Precision is also determined by the
overall size of the CPT (see guideline 1). We caution
that increased precision is not necessarily equivalent to
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Fig. 2. Example of an initial parameterized Bayesian belief network model based on the simple influence diagram shown in Fig. 1.
Nodes are defined as follows: “capture” is the overall predicted probability of capturing a squirrel at least once at a site; “detection” is
the probability of detecting a squirrel if it is present at a site; “occupancy” is the probability that a site is occupied by a squirrel; “re-
sponse model” denotes the hypotheses that detectability is dependent on trapping date and that occupancy is either constant or varies
according to habitat suitability; “habitat suitability” denotes suitability of a habitat for the squirrel in a 16 ha area around each trap
site; “date” is the number of days from the start of the trapping session on 22 June; “number of trap-nights” is the number of nights
when traps were open at each site; “field capture” denotes field capture data (yes/no) used in assessing model accuracy. The model is
shown here running the prior probabilities of input conditions derived from field studies and model parameterization (see Appendix A).
The additional unlinked field capture node represents the actual observation at each field site (capture or noncapture). This is used
when processing the field-data case file to associate the field result with the predicted capture probability for use in assessing model
prediction accuracy.
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increased accuracy. In some models, nodes with fewer
states may provide a more accurate prediction, although
more states may provide greater precision.
An exception to this guideline occurs when a calculation
needs continuous values (e.g., the formula calculating
the occupancy node in Fig. 2). In this case, the nodes
need to be “discretized” to convert the continuous out-
come to discrete states, and this can be done using a
large number of discrete states if needed (e.g., as used
in the models by Steventon et al. 2006). If sources pro-
vide specific cutoff values of some continuous environ-
mental or habitat variable, one should use those values
to define the cutoff values of the discrete states.
A corollary to this guideline is to insert states where
conditions intermediate between the states shown need
to be explicitly represented. That is, spreading probabil-
ities between two states is a measure of uncertainty or
of a known or suspected frequency distribution of those
states, not a statement of some intermediate condition
between those states.

(6) The depth of the model — the number of layers of
nodes — should be kept to four or fewer, if possible.
This is desirable for at least three reasons: deep models
with many intermediate nodes (latent variables) may
contain unnecessary uncertainty propagated from input
to output nodes; the sensitivity of the output node to in-
put nodes may be swamped and dampened by interme-
diate nodes; and output nodes in models with
asymmetric structures may be far less sensitive to more
distant input nodes with many intervening intermediate
nodes than the modeler intended. If it is not possible to
keep the model structure relatively shallow, consider-
ation should be given to breaking up the model into two
or more networks.
As with guideline 1, an exception occurs when the ob-
jective is to represent complex ecological processes.
However, algorithms can be applied (in Netica®, for ex-
ample) as needed, to simplify overly complex models by
“absorbing” nodes that are no longer being updated or
have minimal influence while maintaining the inferen-
tial relationship among remaining nodes.

(7) If models are needed for several spatial scales, they
should be developed simultaneously. Output of one
BBN model can be used as input to another. For exam-
ple, a broad-scale landscape model identifying general
biophysical conditions suitable for a species can become
the basis for a fine-scale site model (or vice versa).

(8) The model, including the rationale for each node and
each linkage, should be fully documented. Some model-
ing shells, such as Netica®, have integrated documenta-
tion features that help track authorship, dates and
sources of updates, and descriptions of each node.

(9) Links should be inserted between the input nodes if
they are likely to be correlated; a statistical assumption
of BBNs and the statistics of Bayesian updating is that
prior probabilities associated with unlinked input nodes
are uncorrelated.
For example, tree age and height are usually correlated
(Kalliovirta and Tokola 2005). A link can be shown
from age to height (e.g., height as a partial function of
age) if they are used as inputs, and then links can be
drawn from age and height to other parts of the model

as needed. When processing a case (see below) where
values for both age and height are known, then the ac-
tual values of both are applied. However, if age is
known but height is not, then height is inferred to be
conditional on age rather than assumed to be completely
unknown. In this way, correlations between the nodes
and prior knowledge are used.

Model-induction approaches
One approach to building the alpha-level BBN model is to

use case data to induce the model structure, that is, the
nodes, their states, and their linkages. In general, this is a
form of “data mining” (Hastie et al. 2001) and “rule induc-
tion” (Jeffers 1991) whereby specific relationships among
variables are calculated from data tables. As in the example
given here (Table 1), multiple trapping results for a species
may result in a case data table showing conditions (date,
number of trap-nights, and habitat suitability) at trap loca-
tions. The case data table can then be mined to determine
the highest correlations of the prediction variables (trapping
conditions and environmental or habitat factors) with the re-
sponse variable (species capture). However, we do not advo-
cate this approach for initially structuring the BBN model,
as it might overfit the data, which are often scant and biased,
particularly with rare species or uncommon ecological
events. Overfitting data often results in model structures that
represent specific and spurious statistical correlations rather
than more robust, expert-based knowledge on causation
(Clark 2003). In the following section we discuss using case
data for updating node probabilities, which is a more appro-
priate use.

Representing proxy nodes
The ideal BBN model uses input (parentless) nodes that

represent true, proximate environmental or habitat attributes
with causal influence. In many cases, however, data simply

Date
No. of
trap-nights

Habitat
suitability Capture

0 5 0.151875 0
0 5 0.634375 0
0 5 0.08125 0
0 5 0.74875 0
0 5 0.553125 0
� � � �

95 7 0.253125 0
95 7 0.421875 0
95 7 0.252500 0
95 7 0.265625 0
95 7 0.150625 1

Note: Each row represents a different trapping-sample
outcome. Such data can be used to induce an initial net-
work structure or to refine probabilities of relationships in
an existing network. Each column heading refers to a node
in the squirrel Bayesian belief network (BBN) model (Fig.
2). Only 10 of the total 135 trapping-sample outcomes,
which included 112 no-capture outcomes (capture = 0) and
23 capture outcomes (capture = 1), are shown.

Table 1. Example of a case data table showing
northern flying squirrel (Glaucomys sabrinus
(Shaw)) captures from multiple trapping nights.



are not available for such variables, and proxy variables can
be used to represent the ideal variable. As an example, data
on forest-stand canopy closure may not be available but data
on stand tree density could serve to some degree as a proxy.
In such cases, for those nodes one can add a parent node that
would be the proxy variable to the correlate node it repre-
sents. The CPT for the correlate node would then be ad-
justed to represent the degree to which each state of the
proxy node truly represents each state of the correlate node.
This essentially denotes the uncertainty with which the
proxy node represents the correlate node. Such probabilities
can be estimated after consulting with domain or GIS ex-
perts or generated from case data.

Creating the CPTs for each node
The heart of any BBN consists of the set of probability ta-

bles underlying each node (e.g., Table 2). Parentless nodes
have unconditional probability tables that represent prior
knowledge on frequencies of each state or, alternatively, uni-
form probabilities if there is complete uncertainty about
those prior conditions. It is generally preferable to at least
estimate prior distributions, representing some prior knowl-
edge, rather than use uniform distributions, representing
complete uncertainty.

Child nodes have CPTs that represent combinations of all
states of its parent nodes. Not every cell in a CPT must have
a nonzero entry: some can be 0%. Cells also can be denoted
as representing impossible combinations. Rows must total
100% (the sum of probabilities of all possible outcome
states for a given set of prior conditions) but column totals
do not (the sum of likelihoods of all possible prior condi-
tions for a given state). In fact, column values in a CPT can
be interpreted as likelihoods of prior conditions given an
outcome state. One can normalize a column and thereby es-
timate the normalized likelihood function for each outcome
state.

There are several practical ways in which CPT values can
be established in the initial, alpha-level BBN model. If the

child node has an equation, then probabilities can be calcu-
lated explicitly (as used in the detection and occupancy
nodes in Fig. 2; see Appendix A). Alternatively, if CPT val-
ues are to be at least initially specified by experts, one ap-
proach is to set all CPTs to a uniform value, “peg the
corners” by setting the extreme cases to 0% or 100%, adjust
the middle or most moderate case, and then back-interpolate
all other entries. Another method is to represent the states in
the node as discrete conditions and then identify the single
most likely outcome for each combination of parent-node
states, effectively forcing one outcome state for each input
combination. Then the outcome states can be considered
continuous values, and probabilities for each row can be ad-
justed to represent a reasonable probability distribution,
keeping the most probable outcome to the state identified in
the discrete condition. Other, more advanced statistical tech-
niques of populating CPTs from case data are discussed in
the section Updating BBN models with case files.

The values entered in a CPT can be cross-checked by
scanning down each column and asking whether the entries
with the highest (and lowest) values — essentially constitut-
ing the likelihood function and the maximum (and mini-
mum) likelihood value(s) for each state — really represent
the most (and least) likely causal conditions for that state. If
not, the CPT values can be readjusted accordingly. Any de-
fensible empirical information can be used to support the
CPT values, and should be fully documented.

Testing and adjusting the BBN
When a CPT is fully specified, the BBN model can be

compiled and the behavior of the CPT tested by trying dif-
ferent combinations of input values and observing the result-
ing probabilities in each intermediate node or the final
output node(s). If the model exhibits unrealistic behavior,
consideration should be given to readjusting the ill-specified
CPTs, combining, splitting, or redefining nodes or their
states, or readjusting the overall model structure (connec-
tions among nodes and use of summary or intermediate
nodes) until it responds reasonably. Also, submodel seg-
ments can be tested separately, as can the overall model, us-
ing sensitivity analysis to determine the absolute degree and
the rank order of influence of parent variables on each out-
come variable in the model. CPT values then can be adjusted
to make the model’s sensitivity conform to known or ex-
pected behavior.

Standard sensitivity analysis uses calculations of variance
reduction (VR) when dealing with continuous variables and
entropy reduction with discrete or categorical variables (Ap-
pendix B). Sensitivity analysis can help verify correct initial
model structure and parameterization. Sensitivity analysis
for our squirrel model revealed that date has a far greater in-
fluence on detection (VR(date) = 0.0227) than does number
of trap-nights (VR(trap-nights) = 0.0002). This confirms that
the model is correctly representing the expectations of the
expert. It should be clear that, at this point, the goal is to get
the model to tell you what you think it should tell you, that
is, to represent expert judgment and any initial empirical
data (or equations) on how the system works. The rationale
for this step should be documented, particularly the specific
content and use of expert experience, literature, and initial
data.
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Parent node states
Outcome states
(detection)

Date
No. of
trap-nights

Response
model Yes No

0 to 10 5 A 0.0566 99.943
0 to 10 5 B 0.0594 99.941
0 to 10 6 A 0.0680 99.932
0 to 10 6 B 0.0712 99.929
0 to 10 7 A 0.0792 99.921

� � � � �

90 to 100 8 B 79.229 20.771
90 to 100 9 A 81.618 18.382
90 to 100 9 B 82.760 17.240
90 to 100 10 A 84.621 15.379
90 to 100 10 B 85.699 14.301

Note: Values were calculated according to the method and equation
shown in Appendix A. Outcome values sum to 100 across each row and
represent frequencies or probabilities of each outcome state, given combi-
nations of input (parent node) states. Not all table entries are shown here.

Table 2. Example of a conditional-probability table for the de-
tection node in Fig. 2.



This completes the initial, alpha-level modeling. The
model can be named version 0.10a, where, in modeling tra-
dition, the version number <1 signifies that it is not ready
for public release and “a” refers to the alpha level (for inter-
nal use and review only). The model files, including all sig-
nificant versions and changes, should be backed up and the
backups tracked with meta-documentation. This may be im-
portant for administrative purposes.

Creating the beta-level model

In this step, the alpha-level model undergoes formal peer
review from (an)other subject-matter domain expert(s). The
modeler can consult with at least one other species expert
not involved in creating the model, to review and potentially
revise the BBN model structure and CPT values. The docu-
mentation created in the alpha-level-modeling step will be
useful for informing the reviewer on model structure.

In conjunction with the modeler, the peer reviewer will
then review the model structure and CPT values and will ei-
ther suggest edits or confirm the model’s construction. If
necessary, the model can be revised and thereafter treated as
a competing model for later validation testing.

Following the peer review, the original domain expert(s) is
(are) shown the reviewer’s comments and, where appropri-
ate, any revised model forms. Reconciliation with the review
is conducted by documenting the original expert’s accepted
changes or other responses. Modelers should conduct the
peer review and reconciliation as a formal process — as
with writing and publishing papers — because it is essential
for ensuring that the model is rigorously developed accord-
ing to strict standards and is thus credible. The result is what
can be termed a beta-level model, which can be initially
named version 1.00b. Again, each version of the model
should be saved as a track record of changes, along with
documentation as to how and why the changes were made.
This creates checkpoints and plateaus of model development
to save in case they are needed for later reference.

Creating the gamma-level model

Testing, calibrating, validating, and updating BBN models
is one of the more interesting and essential steps in the
model-building process. Models intended for prediction pur-
poses that are built solely on the basis of expert judgment,
even with peer review, without testing represent unconfirmed
belief structures or existing theories, with little assurance of
reliability and accuracy. Testing and updating models
derived from field data may be critical to evaluating and
eliminating competing models suggested from the previous
peer-review step.

Testing BBN models with case data
Case data can be used to test the accuracy of the beta-

level model. One of the simpler but more useful outcomes is
a confusion matrix (Kohavi and Provost 1998; Table 3),
which compares predicted with actual outcomes. In the ex-
ample given here, in all 23 cases in which the species was
actually captured (Table 1), the model incorrectly predicted
lack of capture (type I error) as the more likely outcome, but
correctly predicted lack of capture in all 112 cases in which

the species was actually not captured. Thus, the overall
model error rate is 23/135 = 17%, and all errors were type I
(incorrectly rejecting the hypothesis that conditions would
lead to a high probability of capture); no type II errors were
made in this example. This error rate may seem a bit high,
but implications of types of model errors (false positives and
false negatives) depend on how the model will be used. Tyre
et al. (2003) warned that false negatives can unduly bias pre-
diction of species presence. Researchers may be more toler-
ant of type I errors (e.g., having greater certainty over
conditions controlling the presence of a rare species than its
abscence) at earlier steps in building models to understand
species–environment relations. At later steps, such as when
the models are used to design monitoring programs, greater
tolerance for type II errors may be permitted (such as allow-
ing for error in predicting presence of a rare species, so that
occupied sites are not inadvertently ruled to be absent and
unduly disturbed). Another influence on model error rate is
the problem of detectability of the species, given survey pro-
tocols (MacKenzie et al. 2003). However, indices of species
detectability can be included explicitly in BBNs and in pop-
ulation estimates (MacKenzie and Kendall 2002) as shown
in our squirrel example.

Actually, the BBN example used here is a great lesson in
interpreting rates of error in predicting a relatively rare (or a
very common) event, such as capture of an elusive or vagile
organism or prediction of the presence of some very scarce
or difficult to detect species. Confusion matrices may over-
state false-negative outcomes because they rely on predic-
tions based on the most probable outcome, whereas with
relatively rare events a positive outcome (e.g., presence of a
rare species) may never achieve a probability greater than
that for a negative outcome (e.g., absence). Such is the case
with the squirrel model, which will, at best, predict capture
with <50% probability. For instance, in one case in the
squirrel capture case file (Table 1), a squirrel was actually
captured, whereas the BBN would predict capture under
those conditions with only 39% probability and thus that no
capture would be the more probable outcome. However, the
39% probability of capture is far higher than under other
case conditions when no squirrel was captured. Squirrel cap-
tures (a relatively rare event) would be better compared with
these actual probability predictions than just with the most
probable predictions. Thus, one should recalculate error
rates and confusion-matrix outcomes based on comparing
actual values of predicted probabilities instead of just the
most probable outcome states.
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Predicted capture

Yes No Actual capture

0 23 Yes
0 112 No

Note: The confusion matrix shows the number of known
cases that were correctly classified (here, whether the spe-
cies was actually captured or not), given the date, trapping
intensity, and habitat-suitability conditions associated with
each case.

Table 3. Example of a confusion matrix showing
the prediction accuracy of the BBN model in Fig. 2
used with the case data file in Table 1.



To this end, testing the classification success rate can pro-
vide useful information on scoring success by using not the
most likely state as a prediction for each case but rather the
actual belief levels of each state. Some standard scoring
rules for evaluating classification success rate include loga-
rithmic loss, quadratic loss, and spherical payoff (Morgan
and Henrion 1990). Values of spherical payoff, perhaps the
most useful index, vary in the interval [0,1], with 1 being
best model performance, and is calculated as

MOAC
P

P

c

j
j

n
2

1=
∑

where MOAC is the mean probability value of a given state
averaged over all cases, Pc is the probability predicted for
the correct state, Pj is the probability predicted for state j,
and n is the number of states. In our BBN example, spheri-
cal payoff is 0.874, indicating a relatively accurate model for
predicting species capture and particularly noncapture.

The classification power of a BBN model with binary out-
put (e.g., presence or absence of a species) also can be de-
picted using a receiver operating characteristic (ROC) curve
(Pepe et al. 2006) that assesses prediction accuracy across a
continuum of prediction thresholds, rather than an arbitrary
cutoff probability (such as 0.5). A ROC curve plots percent
true positives (“sensitivity” in ROC parlance) as a function
of percent false positives (“1 – specificity”, which is the
complement of the percentage of true positives; Hand 1997;
Cumming 2000; see Fig. 3). Each point on the ROC curve
represents the trade-off between making a true positive pre-
diction versus a false positive prediction with increasing pre-
diction threshold. A 45° diagonal line on the ROC curve

denotes the case of a random-guessing model that carries no
classifier information whatsoever, and the best-performing
model will have a ROC curve that hugs the top left of the di-
agram. The area under the ROC curve (AUC) varies in the
interval [0,1] and is a measure of overall model performance
across the full range of possible prediction thresholds. It rep-
resents the probability that a positive outcome (a squirrel
capture in our example) has a higher predicted probability
than a negative outcome (a noncapture) (Cumming 2000).
The perfect diagnostic model will have 100% sensitivity and
0% false positives, so the closer to AUC = 1 the better the
performance. A ROC curve with AUC = 0.5 represents a
random model, and AUC < 0.5 represents a model that con-
sistently gives the wrong answer. The ROC curve from the
BBN example (Fig. 3) has AUC = 0.81, suggesting good
predictability of a relatively rare event, that is, the trapping
of a squirrel. Note, however, that this test used the data that
were also used in building the model and would be better re-
peated with independent data.

The accuracy of different models can be compared on the
same ROC diagram (e.g., Cumming 2000; Zheng et al.
2006). As with readjusting confusion-matrix outcomes to
better represent model success and error rates with very rare
(or very common) events, the ROC curve too is better repre-
sented on the basis of comparing actual values for model
prediction probability instead of the most probable out-
comes. ROC diagrams and calculations can also be extended
to n Euclidean dimensions when the number of states in the
outcome node is >2 (e.g., with three outcome states the area
under the curve becomes a three-dimensional volume under
a response surface), but they become exceedingly difficult to
depict graphically.

BBN-model testing with case files can handle missing
data on some nodes or states. This can be a major advantage
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Fig. 3. A receiver operating characteristic (ROC) curve showing the results of testing the classification success of the model in Fig. 2
with the case-file data in Table 1. A ROC curve plots percent true positives (sensitivity) against percent false positives (1 – specificity).
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of using a BBN-modeling structure over a more traditional
statistical analysis. An alternative to denoting missing data
for input nodes is to set their states to uniform or suspected
prior-probability distributions.

Updating BBN models with case files
Using case data to update models is one of the hallmarks

of Bayesian statistics (Bauer et al. 1995). For example,
Mac Nally and Fleishman (2004) applied a Bayesian
approach to update their model of indicators of species rich-
ness by using both their model-building and their model-
validation data sets. There is a rich literature on Bayesian
learning and BBN-updating procedures (e.g., Gelman et al.
2003; Mitchell 1997).

Two specific ways in which case data can be used to up-
date BBN models are (1) using test results to calibrate the
model states to better align with the data and (2) using case
data to automatically update the CPTs. In the first approach,
calibration curves can be derived from processing case data
to better determine cutoff values of states that better match
the data set (Morgan and Henrion 1990). Again, one should
be careful not to overfit the model to the data, particularly
with small sample sizes. Some BBN-modeling shells such as
Netica® provide a means of specifying the weight of individ-
ual cases or entire case files when used to update CPTs. To
avoid overfitting the model to scant data, low weights can be
specified.

Another way to calibrate the model is to identify
misclassifications using methods other than the most proba-
ble outcome, as mentioned above. For example, the output
node in Fig. 2 is a binary variable with only two states, cap-
ture or no capture. The confusion matrix and ROC model
testing procedures discussed above use the most probable
outcome as the model prediction for a given case, that is,
when one state has a probability >50%. But each state might
have different costs of misclassification. For example, in a
management context, false positives (more likely with very
common events) may mean that expensive species invento-
ries are conducted or high opportunity costs are incurred by
protecting a site when the species is actually absent. False
negatives (more likely with very rare events) may mean that
site-disturbing activities are allowed that actually cause local
extirpation of the species now or in the future. Depending on
management objectives, species rarity, and other factors,
these two types of error can have very different implications
for effects on the organism and social and pecuniary costs.
Also, prediction of species presence or absence may be
frought with errors in such factors as detectability of the
organism and consistency of surveys (Thompson 2004).
Netica® calculates sensitivity (percent correct positives) for
several probability cutoff values that it derives from the case
data. Using this approach, one can determine more appropri-
ate probability cutoff values in interpreting model predic-
tions.

Updating CPTs to better fit the existing case data can be
done using several Bayesian updating methods. One of the
more popular is the expectation maximization (EM) learning
algorithm (Dempster et al. 1977; Watanabe and Yamaguchi
2003). This approach automatically updates CPT values us-
ing case data so that the model better fits known examples
and can handle missing data in the case files (Lauritzen

1995). Other updating algorithms include sequential
empirical Bayesian analysis, learning gradient analysis, and
probability fading. At least after the first pass, the updated
model, which may be termed the gamma-level or final-
application model, has been tested and revised using valida-
tion data sets. It will have known success rates and be
calibrated to provide the best interpretation of results.

In general, calibrating and updating Bayesian models —
either their overall structure or the CPTs underlying specific
nodes — can be an ongoing, iterative process as new case
data are gathered. This fits well into an adaptive manage-
ment process of improving understanding by means of man-
agement trials (Nyberg et al. 2006).

Other considerations in BBN-model
development

State-modeling objectives and expectations
As with any modeling exercise, the first step should be

clear articulation of the objectives and expected use of the
model. This should include identifying the geographic area
and range of ecological conditions over which the model is
expected to be used, the level of acceptable errors (false
positives and false negatives), and how the outcome states
will be shown.

Attending to coordination needs and watching for
shortcuts

Managers and decision-makers who are expected to use
the model outcomes should be informed and consulted at
key points in the model-development process to ensure that
objectives remain clear and in focus. Also, the modeler can
watch for shortcuts in the BBN-modeling process, particu-
larly if some species can be grouped into sets of BBN mod-
els with common structures. Such structures can be saved as
submodels into libraries of BBN nodes and CPTs, such as li-
braries of GIS proxy variables representing environmental or
habitat factors useful for more than one model. Such librar-
ies can be quickly copied and pasted into new models.

Representing uncertainty and error
When developing and updating BBNs, the modeler should

consider how they wish to represent uncertainty, variation,
and propagation of error within and among the model vari-
ables. In one sense the spread of prior probabilities assigned
to states in the input nodes, and of conditional probabilities
assigned to CPTs in other nodes, represents variability or
uncertainty (Toivonen et al. 2001). Continuous variables in a
BBN can display weighted means and Gaussian standard de-
viations of their values, and BBN nodes can also represent
uncertainty of continuous variables with statistical distribu-
tion functions. As BBNs are run, they execute Bayesian up-
dating of posterior probabilities, which is one way to show
propagation of uncertainty throughout a network, although
strictly speaking it is not the same as analysis of propagation
of error, which, in traditional statistics, entails the thorny
step of estimating covariance among predictor variables
(Kotz et al. 1982).



BBNs and other statistical modeling
approaches

BBNs are but one tool in the modeling toolbox for re-
searchers, resource managers, and decision-makers. Because
a belief network expresses functional, probabilistic relation-
ships between predictor variables and ecological-response
variables of interest, it is akin to a widening variety of statis-
tical methods for hierarchical modeling (where multiple pa-
rameters are structurally related and can be represented by
joint probability models; see Gelman et al. 2003), nonlinear
association and classification (for examples see Congdon
2001; Denison et al. 2002), and a large variety of general
linear models and clustering techniques. BBNs can also be
used to represent the primary relationships between variables
in predictive simulation models, and can be used as a “post-
processing” step to summarize results from model projec-
tions, allowing nonmodelers to explore and interpret results
(for examples of this usage see McNay et al. 2006;
Steventon et al. 2006).

The resource manager may wish to compare predictions
derived from other modeling constructs to better understand
whether results reflect model structure more than actual eco-
logical conditions. We advocate starting with influence dia-
grams, not just because they are analogous to a conceptual
diagram of a model system but also because they can be
used as the basis for many other model forms (Marcot
2006). For instance, influence diagrams can become the ba-
sis for BBNs, graph theory or loop analyses of habitat con-
nectivity, a path regression model, a process-simulation
model, a fuzzy logic model, and other modeling approaches
(e.g., Jensen et al. 1994).

BBNs belong to the school of Bayesian statistics, which
has a history of tension with respect to the traditional
“frequentist” school, although there are advantages to be
gained by dining at both tables (Anderson et al. 2001). Some
authors have helped quell some of the tension and merge as-
pects of the two schools by interpreting BBN posterior prob-
abilities as probabilities of outcomes and comparing these
probabilities with confidence levels in traditional statistics,
such as those used in hypothesis-testing (Reckhow 1990).
BBNs can be used, for example, to calculate a ratio of a
likelihood function of conditions given a null hypothesis to a
likelihood function of conditions given an alternative hy-
pothesis; this odds ratio is analogous to a P value in classical
statistics.

Conclusions and recommendations

Scientists, resource managers, decision-makers, and stake-
holders all share the challenge of how to draw appropriate
conclusions from scientific data, prior beliefs, and simula-
tion modeling. As one type of tool for structuring ecological
data, formulating and testing hypotheses, and exploring con-
sequences of decisions, BBNs are proving tractable and flex-
ible. Examples are found in other papers of this series, such
as those on mapping of ecosystems (Walton and Meidinger
2006) and management of woodland caribou (Rangifer
tarandus caribou (Gmelin, 1788); McNay et al. 2006) and
marbled murrelets (Brachyramphus marmoratus (J.F. Gmelin,
1789); Steventon et al. 2006).

BBNs are easy to build and are thereby double-edged,
combining ease of creation, explanation, and use with the
potential for misuse. We suggest that the BBN modeler fol-
low some version of the modeling guidelines presented here
to avoid creating spurious or unreliable models. This entails
ensuring that the relationships represented in the model
structure are real and, at best, causal, and that all nodes in a
BBN are empirically observable and quantifiable or at least
credible and defensible through peer review. Following rig-
orous methods for testing and updating BBNs can greatly
help in their effective application in adaptive management,
where results of well-designed management experiments can
be used to test management guidelines and refine BBN pre-
dictions (Nyberg et al. 2006).

When developing and updating a BBN model, the mod-
eler should consider how it will be explained to the audience
of intended users, particularly decision-makers. We have
found that although BBN models are fairly intuitive, starting
with the simpler influence diagram (Fig. 1) helps to explain
their structure to nonmodelers. Documenting the source ma-
terial and rationale for how the model was structured, in-
cluding choice of variables and their states, how nodes were
connected, and what was left out, as well as using experts
and data sets in constructing, reviewing, and updating the
model, can go far in avoiding later “battles of the experts”
when the model is applied to resource decision-making.

But it is our experience that the clearest way to explain a
BBN model is simply to show how it works by changing in-
put states and demonstrating their effect on probabilities
generated throughout the model. In an important sense,
BBNs are holistic representations of multivariate outcomes.
Showing how probabilities of these outcomes are affected by
input conditions is the best way to explain their operation
and use. It is also important to be very clear about the scope
of inference or application to be made from such a model,
such as the geographic area, ecological conditions, species,
and decision context in which the model was designed, and
how to scientifically interpret the model results (probability
outcomes) as representations of uncertainty.

The oft-occurring “battle of the models” should be mini-
mized by including peer review and developing, testing, and
eliminating competing model structures during the model-
building phases. Then, the remaining models should be used
only as decision-aiding tools, not to dictate decisions. The
modeler should clearly differentiate ecological prediction
models from decision models; the latter, in BBNs, can incor-
porate decision and utility nodes that we have not discussed
here (see Nyberg et al. 2006).

BBNs can complement or integrate with other kinds of
models, especially for determining effects of environmental
conditions on organisms. Testing, calibration, and validation
updating are paramount in ensuring correct model structure,
especially for prior and conditional probabilities.
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Appendix A. Northern flying squirrel
(Glaucomys sabrinus (Shaw)) Bayesian
belief network model

The example of Bayesian belief network (BBN) is based
on pilot-study data examining whether the occupancy of oth-
erwise suitable habitat by northern flying squirrels was af-
fected by the surrounding forest context. In addition, for
designing future field efforts we wanted to know the influ-
ence of trapping date on capture efficiency; Ransome et al.
(2004) suggested that capture rates are much lower in the
summer than in the fall. Two live traps were placed for five
or seven nights at each of 135 mature-forest locations repre-
senting a range of habitat quality in the 16 ha square sur-

rounding each site (the “habitat suitability” input node in the
BBN model shown in Fig. A1).

The following are node definitions and the equations ap-
plied in the BBN to populate the CPTs. Equations are based
on the zero-inflated binomial MLE method of Tyre et al.
(2003) applied in SAS® version 8 (Steventon et al. 2005).

Capture: The predicted probability [0,1] of capturing a
squirrel at least once, conditional on detection probability
(“detection” node) and occupancy probability (“occupancy”
node), which both vary in the interval [0,1]:

P(capture) = P(detection)P(occupancy)

Detection: The probability [0,1] of catching a squirrel at
least once if it is present, conditional on “date”, “number of
trap-nights”, and “response model” node states.
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Fig. A1. Example of an initial parameterized Bayesian belief
network model based on the simple influence diagram (Fig. A2).
Nodes are defined as follows: “capture” is the overall predicted
probability of capturing a squirrel at least once at a site; “detec-
tion” is the probability of detecting a squirrel if it is present at a
site; “occupancy” is the probability that a site is occupied by a
squirrel; “response model” denotes the hypotheses that
detectability is dependent on trapping date and that occupancy is
either constant or varies according to habitat suitability; “habitat
suitability” denotes suitability of a habitat for the squirrel in a
16 ha area around each trap site; “date” is the number of days
from the start of the trapping session on 22 June; “number of
trap-nights” is the number of nights when traps were open at
each site; “field capture” denotes field capture data (yes/no) used
in assessing model accuracy. The model is shown here running
the prior probabilities of input conditions derived from field
studies and model parameterization. The additional unlinked field
capture node represents the actual observation at each field site
(capture or noncapture). This is used when processing the field-
data case file to associate the field result with the predicted cap-
ture probability for use in assessing model prediction accuracy.
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If the response model node assumes state A, then

P(detection) = 1 – [1 – e–9.535+0.084date value/(1

+ e–9.535+0.084date value)]m

If the response model node assumes state B, then

P(detection) = 1 – [1 – e–9.489+0.084date value/(1

+ e–9.489+0.084date value)]m

“Date value” is the date as a sequential number from 22
June and m is the number of trap-nights. The expression
within the braces is the probability of not detecting a squir-
rel on any single trap-night if the site is indeed occupied: 1
minus the log-odds of detection (Tyre et al. 2003, eq. 4) con-
verted to the probability scale. The probability of not detect-
ing a squirrel at least once (if it is present) over m nights is
the product of the individual trap-night probabilities (the
single-night probability to the power m assuming constant
probability). Finally, 1 minus that probability is the probabil-
ity of detecting a squirrel on m trap-nights (if it is present).

Occupancy: The probability [0,1] of site occupancy condi-
tional on the habitat suitability (x) and response model
nodes. For response model node state A, occupancy proba-
bility is

P(occupancy) = e0.396–0.295x/(1 – e0.396–0.295x)

For response model node state B, occupancy probability
was estimated to be constant at 0.64. The equation is based
on transforming the log-odds of occupancy versus non-
occupancy (Tyre et al. 2003, eq. 4) to the probability scale.

Response model: Represents two a priori assumptions:
state A — that detection probability is dependent on date
and occupancy probability is constant; state B — that detec-
tion probability is dependent on date and occupancy proba-
bility on habitat suitability. The weighting is based on the
small-sample Akaike’s Information Criterion (AIC) weight
for each response model (Steventon et al. 2005).

Habitat suitability: An area-weighted habitat-suitability

score (D. Steventon, unpublished data) from GIS for a 16 ha
square surrounding a trap site. Each 1 ha raster cell in the
16 ha square is assigned a value (0–1) based on the forest-
inventory attributes (British Columbia Ministry of Forests
and Range) stand age, site productivity, and biogeoclimatic
classification to the variant level. The values for all 16 raster
cells are then averaged to give the habitat-suitability score
(0–1) applied in the BBN.

Date: A consecutive number from 22 June, representing
the date of the start of each trapping session.

Number of trap-nights: The number of nights when traps
were open at each site (five or seven).

Field capture: The additional unlinked node “field cap-
ture” represents the actual observation at each field site (cap-
ture or noncapture). This is used when processing the field-
data case file to associate the field result with the predicted
capture probability for use in assessing model prediction ac-
curacy.
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Appendix B. Calculations of model
sensitivity

The following formulae are used to calculate model sensi-
tivity in the modeling shell Netica® (B. Boerlage, personal
communication). Variance reduction (VR) is the expected re-
duction in the variation, V(Q), of the expected real value of
the output variable Q having q states due to the value of an
input variable F having f states, and is calculated as VR =
V(Q) – V(Q|F), where V(Q) = ΣqP(q)[Xq – E(Q)]2, V(Q|F) =
ΣqP(q|f)[Xq – E(Q|f)]2, E(Q) = ΣqP(q)Xq, where Xq is the nu-
meric real value corresponding to state q, E(Q) is the ex-
pected real value of Q before any new findings, E(Q|f) is the
expected real value of Q after new findings f for node F, and
V(Q) is the variance of the real value of Q before any new
findings. Entropy reduction, I, is the expected reduction in
mutual information of Q (measured in information bits) due
to a finding at F, and is calculated as

I H Q H Q F
P q f P q f

P q P ffq
= − = ∑∑( ) ( | )

( , ) log [ ( , )]
( ) ( )

2

where H(Q) is the entropy of Q before any new findings and
H(Q|F) is the entropy of Q after new findings from node F.

Fig. A2. Example of a simple influence diagram showing key
factors affecting expected capture of northern flying squirrels
(Glaucomys sabrinus (Shaw)). Capture is shown to be dependent
on detectability, which is influenced by date and trapping effort,
and by occupancy, which may or may not be influenced by suit-
ability of local habitat (forest) conditions (response model).
Since such diagrams are best used as a basis for further model-
ing, the correlates shown should also express causal relation-
ships, so that the diagram becomes a “causal web”.


