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INTRODUCTION / INTRODUCTION

Bayesian belief networks: applications in ecology
and natural resource management’

Robert K. McCann, Bruce G. Marcot, and Rick Ellis

Introduction

Bayesian belief networks (BBNs) are models that graphi-

Abstract: In this introduction to the following series of papers on Bayesian belief networks (BBNs) we briefly summa-
rize BBNs, review their application in ecology and natural resource management, and provide an overview of the
papers in this section. We suggest that BBNs are useful tools for representing expert knowledge of an ecosystem, eval-
uating potential effects of alternative management decisions, and communicating with nonexperts about making natural
resource management decisions. BBNs can be used effectively to represent uncertainty in understanding and variability
in ecosystem response, and the influence of uncertainty and variability on costs and benefits assigned to model out-
comes or decisions associated with natural resource management. BBN tools also lend themselves well to an adaptive-
management framework by posing testable management hypotheses and incorporating new knowledge to evaluate exist-
ing management guidelines.

Résumé : Dans cette introduction a la série d’articles qui suivent sur les réseaux bayésiens d’appréciation (RBA), nous
donnons un bref apercu des RBA, révisons leur application en écologie et en gestion des ressources naturelles et pré-
sentons une vue d’ensemble des articles dans cette section. Nous croyons que les RBA sont des outils utiles pour re-
présenter I’expertise existante au sujet d’un écosysteme, évaluer les effets potentiels de décisions alternatives de gestion
et communiquer aux profanes les enjeux liés aux décisions associées a la gestion des ressources naturelles. Les RBA
peuvent étre utilisés efficacement pour représenter la part d’incertitude dans notre compréhension et la variabilité dans
la réponse des écosystemes ainsi que ’influence de I’incertitude et de la variabilité sur les cofits et les bénéfices assi-
gnés aux résultats des modeles ou sur les décisions associées a la gestion des ressources naturelles. Les outils que
constituent les RBA se prétent bien également a un cadre de gestion adaptative en formulant des hypotheéses de gestion
qui peuvent étre testées et en incorporant de nouvelles connaissances pour évaluer les directives actuelles concernant la
gestion.

[Traduit par la Rédaction]
fluence of alternative management activities on key ecologi-

cal predictor variables and thence on ecological and other
response variables, and thereby help the manager choose the

cally and probabilistically represent correlative and causal
relationships among variables (Cain 2001; Neopolitan 2003).
In ecological modelling, BBNs are particularly useful for
rapid scoping and intuitive presentation of ecological rela-
tionships. When applied to natural resource management
(hereinafter resource management), BBNs can depict the in-
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best course of action. In this paper we summarize concepts
of BBNSs, review their use in ecological modelling and re-
source management, and introduce the papers in this series.
BBNs have been used in ecological modelling to represent
species—habitat relationships and population viability of ter-
restrial and aquatic vertebrates (Marcot 2007). For example,
BBNs have been used to model responses of birds and mam-
mals to habitat patterns (e.g., Wisdom et al. 2002; Rowland
et al. 2003) and to model population viability of salmonids
(Lee and Rieman 1997). In resource management, BBNs
have been used in a broader decision-support framework
(conceptual or computer-based tools that collectively facili-
tate the decision-making process; Cain 2001) to analyze ef-
fects on wildlife from land-planning alternatives by the
USDA Forest Service and USDI Bureau of Land Manage-
ment in their Interior Columbia Basin Ecosystem Manage-
ment Project in the Pacific Northwest of the United States
(Marcot et al. 2001; Raphael et al. 2001; Rieman et al.
2001). BBNs also have been used to predict and aid water-
quality management (Reckhow 1999) and water-resource
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planning (Bromley et al. 2005), to aid fisheries management
of Baltic cod (Gadus morhua callarias L.) (Kuikka et al.
1999), and to model meta-assessments of fish stocks
(Hammond and Ellis 2002). Cain et al. (1999) emphasized
the utility of BBNs to facilitate stakeholder participation in
resource management planning and decision processes. This
series of papers represents work completed by a team of Ca-
nadian and US ecological researchers and resource manag-
ers. In this series we introduce BBNs, provide guidelines for
their development, and give examples of recent applications
to address current issues in ecology and resource manage-
ment in British Columbia.

Our objective in writing this series was to promote a
broader understanding, awareness, and acceptance of BBNs
as one of the tools that researchers and managers, committed
to making more informed and disclosed decisions about
resource management, should place in their toolbox, with
appropriate caveats. BBNs are intuitive tools for (i) repre-
senting and combining empirical data with experts’ under-
standing of ecological systems, (i) graphically expressing
complex relationships and problems in resource manage-
ment, (ii7) addressing, in a structured way, uncertainties that
plague attempts to solve these problems, (iv) structuring and
evaluating alternative decisions within a context of risk as-
sessment that helps identify best decisions (Marcot 1998),
and (v) fostering communication among ecologists, decision-
makers, and stakeholders who may lack formal training in
the underlying scientific disciplines (Cain 2001). Although
BBNs do not replace field studies and experiments (Marcot
et al. 2001), they can well complement other ecological
modelling approaches such as simulation modelling and
population-viability analysis (Lee and Rieman 1997;
Steventon et al. 2006).

Why Bayesian belief networks?

A BBN is a graphical network of nodes linked by proba-
bilities (Fig. 1). Nodes can represent constants, discrete or
continuous variables, and continuous functions, and how
management decisions affect other variables. Nodes are
comprised of states that are independent, mutually exclusive,
and exhaustive propositions (Olson et al. 1990b; Cain 2001)
about the values or conditions that the variable represented
by the node can assume. Nodes are linked with arrows to
represent direct correlations or causal influences (Olson et
al. 1990b; Cain 2001). Nodes with no incoming arrows are
input parent nodes; nodes with both incoming and outgoing
arrows are summary child nodes; and nodes with no outgo-
ing arrows are output child nodes. Underlying each node is a
modeller-defined table that specifies the unconditional
(prior) probability of each state for input nodes, or the con-
ditional probability of each state for child nodes (nodes rep-
resenting constants, functions, or decisions generally have
no probability tables). The final “posterior probabilities” of
states or values of the output nodes are calculated in the net-
work using standard Bayesian learning statistics
(Spiegelhalter et al. 1993). The computationally effective al-
gorithms in commercial BBN modelling shells permit rapid
updating of probabilities throughout the network as evidence
becomes available by which to select the states of the input
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nodes. BBNs built from most such modelling shells are
highly interactive.

BBNs are somewhat similar to decision trees (e.g.,
VanderWerf et al. 2006) and other decision models that de-
note effects of alternative decision pathways or states of na-
ture on probabilities of outcomes having expected utilities
(values assigned to model outcomes that reflect socio-
economic, political, legal, and management interests). How-
ever, BBNs have several distinct advantages. Principal
among these are their graphical construction, which shows
relationships among variables more clearly (Cain 2001) and
facilitates the use of expert knowledge (Kuikka et al. 1999)
and their use of Bayesian statistics to calculate probabilities
of outcome states, whereas decision trees reveal more detail
about chains of events initiated by decisions (Cain 2001) and
use joint probability distributions. The Bayesian approach is
far more flexible in that it can draw from both empirical data
and expert judgment as a basis for the model structure and
probability tables (Heckerman et al. 1994; Kuikka et al.
1999), account for prior knowledge and missing data, and
use new data to update and refine the model structure and
underlying probability tables, which other, more traditional
modelling approaches such as decision-tree analysis gener-
ally cannot do.

The interactive and graphical representation of BBNs, and
the ease with which they can be created and amended, per-
mit more effective communication of cumulative effects and
outcomes of alternative conditions and decisions than do
more static models such as decision trees and other tradi-
tional statistical approaches like classification or regression
trees. BBNs also are readily understood by nonmodellers
and, if properly constructed, can reveal more underlying de-
tail of how the system works than do fixed decision analyses
(Cain 2001).

BBNs can be used for both data-rich and data-poor appli-
cations; however, in the latter case caution is warranted with
BBNs (Marcot et al. 2006) as with other types of models
(e.g., Beissinger and Westphal 1998). The use of expert
judgment necessitates documenting, defending, and, where
possible, validating the basis for the model structure and
conditional probabilities. BBNs based mainly on expert ex-
perience should be used to generate testable hypotheses and
should follow a rigorous procedure for developing, testing,
and updating the model, such as that suggested by Marcot et
al. (2006).

By representing different potential outcomes of manage-
ment options with probabilities, managers can use BBNs to
rank management options according to decisions that will
most likely lead to desired outcomes. This can be done in
BBNs by calculating expected values of the utility of alter-
native options shown in decision nodes (e.g., Nyberg et al.
2006), and by sensitivity analysis of part of or an entire
BBN model. Most commercial BBN modelling shells (see
Marcot et al. 2006; Nyberg et al. 2006) support sensitivity
analysis, which allows examination of how robust a ranked
set of management options is to varying parameter values
within models or assumptions about the model structure
(Peterman and Peters 1998) and can be useful in identifying
key uncertainties and guiding decision-making under uncer-
tainty. Some management options may be more robust to
particular uncertainties or more effective at reducing the im-
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Fig. 1. Example of a Bayesian belief network model predicting how decisions about timber management and road development can af-
fect habitat quality for the American marten (Martes americana (Turton)) within a sub-basin in the interior western USA and how op-
erational costs and social values associated with marten population densities can influence the timber-management decision. Input
nodes A-E represent habitat conditions where node A is the density of marten mature-forest habitat in the sub-basin; nodes B—E are
directly affected by timber-management and road-development decision nodes M1 and M2. Intermediate nodes F—H are calculated from
underlying conditional-probability tables. Output node I shows the calculated posterior probabilities of marten population density. Util-
ity nodes U-X represent various costs of management decisions and social values of marten population levels. Horizontal bars and val-
ues within nodes are probabilities of states of each variable; values in the decision nodes are expected values of costs, given the
probability structure of the model and utility values; and values below nodes A, F, and I are expected values of habitat-quality or pop-
ulation indices (-1, 0, and 1 represent zero, low, and high densities, respectively) + 1 SD (presuming a Gaussian error distribution).
The basic model is based on Raphael et al. (2001), with added hypothetical management and utility nodes.
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pacts of potential future uncertainties (e.g., environmental
uncertainties estimated through simulation modelling) than
others (Kuikka et al. 1999). Additionally, sensitivity analy-
ses can be used to help build the model correctly (Marcot et
al. 2006), aid in identifying restoration and research priori-
ties (Nyberg et al. 2006), and help resolve conflicts about
management objectives or beliefs about ecosystem function
(Peterman and Peters 1998). Marcot et al. (2006) provide
formulae and recommendations for sensitivity-analysis cal-
culations and present some general insights into how BBN
structure affects model sensitivity.

In addition to inferring the probabilities of alternative
model outcomes for a given set of causal conditions or
“states” of the key ecological predictor variables (i.e., for-
ward propagation of conditional probabilities through the
model structure), BBNs also can be used to infer the most
likely set of causal conditions for a given outcome by solv-
ing the model’s conditional probabilities backwards through
the model structure. This is a most useful feature of BBNS,
one that many other model structures such as decision trees
cannot provide. This examination of likelihoods can be a
useful approach to informing decision-makers of the combi-
nations of variable states across the predictor variables that
can be expected to produce the desired outcome. Marcot et
al. (2006) further discuss probabilities and likelihoods in the
context of BBNs.

Models in ecological research and resource
management

Refining our understanding, quantifying relationships,
generating inferences about the relationships between eco-
logical predictor variables and response variables, and fore-
casting potential effects of management actions are primary
goals of ecological research and resource management
(Marcot et al. 2006). Ecological models and related
decision-support frameworks are simplifying abstractions of
knowledge (Jones et al. 2002) that provide structure to what
we know, and need to know, about a system of interest. Such
abstractions are necessary to help define problems, convey
ecological concepts and relationships (either known or as-
sumed), characterize potential system responses to manage-
ment perturbations, and evaluate alternative management
policies.

We contend that models are particularly effective when
they represent complexity, causality, uncertainty, and vari-
ability in a clear and intuitive fashion. Any model, however,
will be founded on limiting assumptions. Models are not in-
tended to be perfect descriptions of reality, and resultant pre-
dictions will always be imperfect (McCarthy et al. 2001).
Nonetheless, models have contributed greatly to resource
management when they have used and invoked further field
research leading to new insights, model revisions, and more
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accurate predictions of the potential effects of management
decisions. Such an approach to modelling fits well with the
application of BBNs in adaptive management (Nyberg et al.
2006).

Most problems in resource management are characterized
by scant data and uncertainty about how biological systems
function and respond to specific human activities (Starfield
and Bleloch 1986). This presents two challenges for re-
source managers: (1) how to make good, science-based man-
agement decisions; and (2) how to best acquire the data
needed to improve understanding. These are also related
problems in resource modelling. Uncertainty and the inher-
ent complexity of ecological and resource management sys-
tems have been cited as the basis for legal challenges to the
biological credibility of ecological models and associated
resource-management decisions (Harrison et al. 1993; Noon
and Murphy 1994; Taylor et al. 2000). We expand on the
problems of complexity, causality, uncertainty, and variabil-
ity in ecological modelling and decision-making, and sug-
gest some desirable characteristics of tools — particularly
BBNs — that are intended to address resource-management
issues (Table 1).

Complexity and causality

Ecosystems are composed of heterogeneous, complex net-
works that exhibit nonlinear and transient behaviors (Green
et al. 2005). Multiple interactions occur within ecosystems
among plants and animals and are overlain by temporal, spa-
tial, and abiotic (e.g., topographic, climatic) variation of spe-
cies and system parameters (Olson et al. 1990a). Such
complexity may require understanding of metapopulation
and habitat patch dynamics, habitat connectivity, cumulative
effects, feedback loops, and habitat affinities that are
multiscalar and variable.

Ecosystem management is increasingly driven towards
multiple goals, including lofty and at times conflicting ex-
pectations of sustainability of multiple resources over large
areas and long time periods (Kangas and Kangas 2004).
Management decisions that address value-laden resource de-
scriptions such as biodiversity and ecosystem integrity defy
easy analysis and quantification (Lamas and Eriksson 2003).
They are better served by incorporating socio-economic, po-
litical, and cultural considerations (Cain et al. 1999; Cain
2001), by explicitly integrating the concerns of multiple
stakeholders (Cain et al. 1999; Cain 2001; Kangas and
Kangas 2004), and by reducing the value-laden descriptions
to more objective and quantifiable parameters (Morrison and
Marcot 1995). As management responds to the increasing
and changing values and expectations placed on natural re-
sources, resource-management systems themselves become
more complex (Liamas and Eriksson 2003; Kangas and
Kangas 2004).

Understanding and effectively managing complex ecologi-
cal systems therefore require a multidisciplinary approach. A
modelling approach such as that afforded by BBNs can rep-
resent the complexity of ecosystem and resource-
management systems in hierarchical ways by decomposing
or partitioning the problem into solvable steps, clearly repre-
senting value-laden concepts by empirical parameters, and
combining knowledge from different disciplines and stake-
holders (Cain et al. 1999).
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Uncertainty and variability

Uncertainty is distinguished from variability in recogni-
tion of their differing ramifications for decision-making
(Thompson 2002; Cullen and Small 2004). Uncertainty is a
lack of information or knowledge (Thompson 2002; Kangas
and Kangas 2004) and is a property of our limitations in ob-
serving or understanding a system (Finkel 1996). Difficulties
in estimating system parameters arise from bias and sam-
pling errors due to imperfect sampling techniques, and from
measurement error. Limitations in obtaining sufficient infor-
mation about a system’s behavior prevent correct specifica-
tion of causal relationships among system parameters and
lead to incorrect specification of the underlying model
(Finkel 1996). Uncertainty about parameter estimates and
causal relationships often can be reduced with additional re-
search (Finkel 1996; Thompson 2002).

Variability is a system property (Finkel 1996) and refers
to naturally or anthropogenically induced variation in an
ecological system over space and time: that is, the degree of
lability, or susceptibility to change, in system parameters.
Ecological processes vary and additional research cannot re-
duce true variability (Finkel 1996; Thompson 2002) but may
lead to the degree and patterns of such variation in some pa-
rameters becoming well known.

Uncertainty and variability both are components of quan-
titative risk assessment but they invoke different treatment
and interpretation in decision-making. Modelling uncertainty
can involve eliciting expert judgment to determine probabil-
ity distributions (Cleaves 1994; Cullen and Small 2004),
whereas modelling variability may be addressed by theoreti-
cal or empirically derived frequency distributions (Cullen
and Small 2004). Under uncertainty the true levels of risk
associated with a decision are unknown (Cullen and Small
2004) because the expected outcome of the decision might
not actually occur (Thompson 2002). Under variability an
expected outcome might not be optimal for all individuals,
geographic locations, or time frames (Thompson 2002; Cul-
len and Small 2004).

Resource managers may want to use a tool, such as
BBNSs, that can represent both uncertainty and variability in
terms of probabilities of different potential outcomes or sys-
tem responses, given initial conditions and human activities
(Olson et al. 1990a, 1990b). Because of their probabilistic
basis and their ability to explicitly represent and quantify the
expected utility of alternative management decisions and
strategies (decision sequences or combinations), BBNs lend
themselves well to representing variability of the system and
uncertainty of understanding, and their implications to possi-
ble management decisions (Kuikka et al. 1999). Compared
to deterministic point estimate models, this accounting for
uncertainty and variability in information may dramatically
change managers’ perceptions of both the current status and
acceptable utilization rate of resources (Kuikka et al. 1999).
Results derived from deterministic point estimate models or
classical hypothesis testing may underestimate the attendant
risks of a decision due to failure to consider all plausible pa-
rameter values and all plausible combinations thereof, or all
plausible hypotheses, and the attendant uncertainties (Lud-
wig 1996; Kuikka et al. 1999). Bayesian approaches can be
used to assess the relative plausibility of parameter values
and hypotheses and weight them accordingly through ex-
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plicit consideration of uncertain or subjective information,
and can lead to a systematic approach to sensitivity analysis
(Ludwig 1996).

Acceptability and communication

Resource management is, at its heart, people management,
and is mediated through revealing to decision-makers, the
public, and others the consequences of competing manage-
ment policies. The degree to which a proposed resource-use
policy is acceptable to decision-makers and stakeholders
lies, in part, in the validity of the underlying scientific evi-
dence, consistency with existing social and cultural views,
economics, and the degree to which the policy is understand-
able and commensurate with other existing, accepted poli-
cies (e.g., Carr et al. 1998; Butler and Koontz 2005). In
modelling, “face validity” is used to determine if a model
fits preconceived notions and makes sense (Gass 1977;
Lacity and Janson 1994), and reflects its degree of accept-
ability. Models for guiding resource-use policy should have
high face validity among experts and ultimate users, and
therefore can help guide communication with nonexperts.

Most decision-makers, public interest groups, and legal
professionals are not trained as ecologists or modellers and
are unlikely to comprehend tests of null hypotheses, techni-
cal jargon (Ellison 1996), or complex representations of eco-
systems (Boyce 1992). Thus, a modelling approach that
provides a readily understandable representation of complex
systems and human influences, without sacrificing desired
levels of accuracy and validity, can be of vast help in com-
municating with nonspecialists. To this end, we have found
that BBNs facilitate communication through their interactive
nature and ability to demonstrate graphically how assump-
tions affect the probability of outcomes (Kuikka et al. 1999).
Several papers in this series also describe the use of simpli-
fied “box and arrow” influence diagrams (Marcot et al.
2006; Nyberg et al. 2006; Walton and Meidinger 2006) that
express expected causal relationships as the basis for repre-
senting or creating more complex BBN models (Zhang
1998); influence diagrams also have great value as a com-
munication tool (Marcot 2006b) as well as providing the ba-
sis for alternative model structures, including BBNs.

Decision-making

Resource management entails making difficult decisions
in the face of interactions among complexity, uncertainty,
and variability. Complexity makes understanding uncertain
and communicating what we understand difficult; uncer-
tainty about our understanding and inherent parameter vari-
ability make the results of decisions imprecise. We are not,
however, absolved from making resource decisions (Beissinger
and Westphal 1998; Peterman and Peters 1998). Classical
hypothesis testing provides a poor basis for decision-making
about resources because it does not reveal the probabilities
and utilities of null and alternative hypotheses given the
data, even though this information is what managers fre-
quently want (Ellison 1996). Consequently, explicit treat-
ment of uncertainty and variability through risk analysis
(i.e., determining the probability of possible outcomes and
their utilities; Marcot 1998) and risk management (i.e., artic-
ulating the manager’s attitude to risk; Marcot 1998) is a
component of effective decision-making, enhances the face
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validity of decisions and models used, and allows decision-
makers to examine trade-offs between a desirable outcome
and the chance (or risk) that a particular management deci-
sion may not lead to such an outcome (Cain 2001; Kangas
and Kangas 2004).

The decision-making process can be supported by using
Bayesian decision networks (BDNs; Nyberg et al. 2006),
which are BBNs that incorporate nodes to represent poten-
tial management decisions and, optionally, utilities of out-
comes. Other modelling approaches such as decision trees
can explicitly show alternative decisions and utilities, but
BDNs apparently are unique in that they instantly recalculate
and clearly display probabilities of conditions and outcomes,
and the resultant utility, as alternative decisions or strategies
are specified. Comparing outcome values weighted by their
respective probabilities among alternative management deci-
sions is a representation of risk associated with the uncer-
tainty, variability, and complexity surrounding potential
management activities. BBNs also can contribute indirectly
to sound decision-making by representing probabilities of
ecological responses to natural events and management ac-
tions within larger decision-support frameworks. For exam-
ple, dynamic landscape models can be used to generate
inputs to BBNs that, in turn, predict outcomes of alternative
simulations in meaningful ways that can aid a resource deci-
sion process, such as in the management of habitat for
woodland caribou (Rangifer tarandus caribou (Gmelin);
McNay et al. 2006).

Shortcomings of and caveats about using BBN models

Notwithstanding tensions between ‘“frequentists” and
Bayesians (Dennis 1996), BBNs have, in addition to their
strengths, specific weaknesses, and caveats are necessary re-
garding their use (Table 1). Construction of BBNs requires
the specification of a full probability structure of variables
and their relations (Olson et al. 1990b), which can be cum-
bersome to implement. For example, conditional probability
tables (CPTs) of child nodes are usually derived from exist-
ing data sources, expert judgment, or a combination. Often
data are scarce for particular configurations in the CPT and
expert judgment must fill in the gaps. This can be a daunting
task for rare events and when the number of probabilities to
be estimated is large. CPTs can quickly become unwieldy
(Marcot et al. 2006; Walton and Meidinger 2006) when they
represent large numbers of states of multiple parent nodes
and of the node being evaluated. Elicitation of expert judg-
ment should follow structured approaches, particularly to ad-
dress rare but important events and to minimize the potential
for bias (Cleaves 1994). Marcot et al. (2006) and Marcot
(2006a) provide guidelines on structuring BBNs to keep
CPTs tractable and how to create CPTs using expert judg-
ment.

Temporal dynamics are important considerations in ecol-
ogy and resource management because biotic systems
change over time. BBNs represent temporal dynamics
poorly, however, through a cumbersome process of time ex-
pansion (Nyberg et al. 2000) that involves discretizing time-
based variables, replicating the entire BBN structure for
each instance of time, and establishing links between nodes
in adjacent replicates of the BBN. For some applications, the
temporal component can be handled outside the BBN, but
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this often requires substantial exchanges of data between
models. In general, the difficulty of handling temporal dy-
namics highlights two additional drawbacks of BBNs:
(1) the requirement to discretize continuous functions, which
can result in lower precision of variable values, and (2) their
inability to handle the feedback loops that are often impor-
tant in ecology and other disciplines (Nyberg et al. 2006).

Although BBNs offer some advantages in addressing un-
certainty and variability, they are still prone to many of the
general limitations of other modelling approaches. In most
applications it is unlikely that all sources of causality, uncer-
tainty, and variability are incorporated in the model or enu-
merated without errors and inaccuracies. BDNs also are
taxed by decision-rule uncertainty (Finkel 1990) that stems
from difficulties in quantifying or comparing societal values
and preferences. Poor enumeration or omission of relevant
uncertainties, for example, results in overestimating system
controllability and a too optimistic perception that some de-
sired outcome will be attained (Kuikka et al. 1999).

BBNs, like other modelling approaches, should not dictate
management decisions (Conroy 1999) but could aid
decision-making as components of a larger process of man-
agement, research, and monitoring. The onus remains on the
modeller to demonstrate causality and address potential
explanatory variables not included in the model. Decision-
makers should not assume that all relevant uncertainties
(either informational or with respect to management objec-
tives) and variability have been identified and included in
the model. Marcot et al. (2006) and Nyberg et al. (2006) ex-
pand on several weaknesses of BBNs and caveats about their
use in ecological and resource-management applications.

Papers in this series

The remaining papers in this series on BBN applications
in ecology and resource management provide readers with
guidelines for their development and examples of recent ap-
plications of BBNs in these contexts. We briefly summarize
the objectives of each paper here.

Approaches and insights concerning the correct building
of BBNs are scattered widely throughout the literature. In
“Guidelines for developing and updating Bayesian belief
networks applied to ecological modeling and conservation”,
Marcot et al. (2006) present practical procedures to guide
the development, testing, and revising of BBNs and avoid
spurious or unreliable models. They illustrate their approach
with an example of an empirically based ecological BBN
that predicts capture success for northern flying squirrels
(Glaucomys sabrinus Shaw) as a function of the probability
of squirrels’ presence due to habitat, and the probability of
detection if they are present.

Applications of BBNs for resolving resource-management
issues involving high-profile species are the focus of two pa-
pers. McNay et al. (2006) apply BBNs to aid in the evalua-
tion of conservation-policy scenarios for woodland caribou
seasonal ranges in “A Bayesian approach to evaluating habi-
tat for woodland caribou in north-central British Columbia”.
Following the procedures of Marcot et al. (2006), they de-
velop BBNs to model seasonal ranges of woodland caribou
and apply the BBNs to assess spatially explicit range condi-
tions over four planning areas under optimal, current, and
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simulated future conditions that mimic a conservation-policy
scenario and a natural-disturbance scenario. In this applica-
tion BBNs help to articulate ecological understanding and
threats to woodland caribou seasonal ranges, to focus deci-
sions, and to support an assessment of attendant risks in the
decision-making process.

In “A population-viability-based risk assessment of mar-
bled murrelet nesting habitat policy in British Columbia”,
Steventon et al. (2006) apply diffusion models implemented
in a BBN framework to conduct population-viability analy-
ses for the Marbled Murrelet (Brachyramphus marmoratus
Gmelin). They use this approach to make regional and
coastwide population-resilience assessments, considering
policy inputs such as the amount and quality of nesting habi-
tat, the number of subpopulations, and the time scale of the
assessment. In addition to allowing explicit and flexible in-
clusion of uncertainty, the BBN approach permits rapid and
interactive modifications of parameter value weightings (to
explore sensitivity) and probability distributions (to express
assumptions representing views of multiple decision-
makers).

In Walton and Meidinger’s (2006) paper, “Capturing ex-
pert knowledge for ecosystem mapping using Bayesian net-
works”, BBNs are applied, apparently for the first time in
British Columbia, as the knowledge base (i.e., a set of rules
defining relationships between input variables and output
predictions) for predictive ecosystem mapping. Large-scale
ecosystem maps are fundamental tools for land managers re-
sponsible for assessing the impacts of resource-extraction
activities such as forestry on other resource values (e.g.,
woodland caribou; McNay et al. 2006). Although map-
accuracy results are similar to the prevailing belief-matrix
approach to predictive mapping, the authors conclude that
BBNs are easier to develop, interpret, and update.

In the final paper of this series, “Using Bayesian belief
networks in adaptive management”, Nyberg et al. (2006)
note that formal models are not always applied in adaptive-
management programs and argue that many such programs
would benefit from the use of the powerful and easily
grasped modelling approach of BBNs. They outline the ap-
plication of BBNs in the adaptive-management process and
provide a supporting case example of a BBN applied to the
adaptive management of forests and terrestrial lichens im-
portant as winter forage for woodland caribou. Important
benefits of a BBN in this context are the promotion of a
shared understanding of the system and the fomenting of
rigorous consideration of alternative resource-management
policies.

Conclusion

BBNs are effective tools in structuring and focusing eco-
logical research. They can be applied in two main ways to
guide ecological research. The first way is to evaluate under-
standing of the overall functioning of the ecosystem por-
trayed. Research can focus on the “arrows” of the BBN and
address the functional relationships of the ecosystem, or on
the “rules” used to construct the conditional probabilities for
a node and address the mechanisms that describe the interac-
tion of factors in determining the values of resulting re-
sponse variables. Research and BBN modelling can address
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questions as to what ecological processes are involved,
which ones are most important in influencing outcomes,
how they interact, and how predictor variables contribute to
ecological processes.

The second use of BBNs in research is to evaluate the val-
ues of the response nodes. Research can focus on field eval-
vations that test the model and can provide empirical
information that is quantitative, useful, and focused on a key
ecological variable. BBNs can aid such research by identify-
ing variables that have the greatest influence on outcomes
but are understood the least, and by supporting the structur-
ing and designing of adaptive-management trials to test re-
sponses to management decisions.

Most applications of BBNs for resource-management pur-
poses should be placed within a framework that supports
learning from what we do, links management to science, and
promotes continual improvement in management protocols.
We recognize seven steps in the development of such a
framework: (1) the need for a decision is acknowledged
(Olson et al. 1990a); (2) the problem is clearly articulated by
engaging the stakeholders; (3) a “causal-web” understanding
of the system (the “model”) is built; (4) potential future con-
sequences of each decision are listed, probabilities are as-
signed, and values (utilities) of each identified outcome are
calculated (risk analysis); (5) the decision-maker (“‘man-
ager”) articulates their decision criteria and risk attitude (risk
management); (6) the decision-maker makes the appropriate
decision (Olson et al. 1990a); and (7) the researcher con-
ducts supportive field experiments and monitors clearly es-
tablished indicators to provide baseline information, ensures
that activities are in compliance with the decision, deter-
mines the effectiveness or success of the decision with
respect to desired future conditions, and validates the as-
sumed causality under which the decision was derived. In
essence, these steps define an adaptive-management program
(Nyberg et al. 2006) with the proviso that field experiments
and monitoring result in iterative refinement of steps 2
through 7. BBNs can play increasingly helpful roles within
an adaptive-management framework such as causal-web
models to aid understanding of ecosystem response (step 3)
within larger modelling environments that support decision-
making and resource management, and as decision networks
(steps 4-6) that clearly display the anticipated effects of al-
ternative management decisions and strategies.
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